1.PCA 降维算法 —— 原理与实现
2.Opencv findcontours函数原理,现源以及python numpy实现
3.Python数据分析实战-实现T检验(附源码和实现效果)
4.10分钟!现源用Python实现简单的现源人脸识别技术(附源码)
5.硬核福利量化交易神器talib中28个技术指标的Python实现(附全部源码)
PCA 降维算法 —— 原理与实现
PCA(主成分分析)是一种常用的数据降维方法,通过线性变换提取数据的现源主要特征分量。适用于高维数据处理,现源具体步骤如下:
1. 收集[公式]条[公式]维数据。现源ecshop 点卡网站源码
2. 计算数据的现源协方差矩阵。
3. 求解协方差矩阵的现源特征值与特征向量。
4. 选择最大的现源特征值对应的特征向量作为主成分,依次类推。现源
使用numpy库实现PCA的现源Python代码如下:
源代码链接:[github.com/leizhang-geo...]
PCA的核心思想是将方差最大的方向作为主特征,使得数据在不同正交方向上相互独立。现源这有助于简化数据结构,现源但PCA存在局限性。现源对于高阶相关性数据,现源考虑使用Kernel PCA,通过Kernel函数转换为线性相关。PCA假设主特征分布在正交方向上,android滑屏源码非正交方向存在较大方差时,PCA效果不佳。PCA是一种无参数技术,通用性强,但缺乏个性化优化能力。
Opencv findcontours函数原理,以及python numpy实现
OpenCV的Findcontours()函数原理来源于一篇名为《Topological Structural Analysis of Digitized Binary Images by Border Following》的论文。该论文详细介绍了算法的实现,并提供了算法的源代码。
在论文中,对于一些关键定义进行了阐述:
1. 轮廓点:在一个4-或8-邻域内,如果存在一个像素为0的点,则该点为轮廓点。
2. 连通区域的环绕:对于两个相邻的连通区域S1和S2,如果S1上任意一个点的四个方向都能到达S2,那么S2环绕S1。
3. 外轮廓和孔轮廓:外轮廓是html 导航栏 源码指像素为1的连通域内被像素为0的连通域环绕的轮廓点,孔轮廓是指像素为0的连通区域被像素为1的连通区域环绕的轮廓点。
4. 父轮廓:定义了层级关系,例如,对于一个像素为1的连通区域S1和一个像素为0的连通区域S2,如果S2环绕S1,则S1的父轮廓为环绕S2的值为1的像素。
轮廓扫描过程中,从左到右、从上到下的顺序扫描,根据扫描到的边界起始点判断轮廓类型。找到起始点后,根据上一个轮廓的编号判断父轮廓。最后,通过border following找到该轮廓的所有点。
在实现过程中,需要定义输入,初始化NBD为1,网页php源码解析LNBD为1。在每一行扫描开始时,LNBD重置为1。根据当前扫描到的像素值,不断更新当前点,并绕着该点逆时针旋转寻找下一点,并不断更新像素值。
在实现过程中,遇到了一个问题,即当像素左边和右边同时为0时,需要进行特殊处理。因为轮廓是逆时针寻找,所以可以通过寻找的方位判断该赋值NBD还是-NBD。具体实现可以参考代码。
修正后,结果与论文一致。有兴趣的天天钻 php 源码朋友可以查看代码。
结果图展示了轮廓编号、frame边缘、子轮廓、父轮廓、轮廓开始索引和轮廓类型等信息。
Python数据分析实战-实现T检验(附源码和实现效果)
T检验是一种用于比较两个样本均值是否存在显著差异的统计方法。广泛应用于各种场景,例如判断两组数据是否具有显著差异。使用T检验前,需确保数据符合正态分布,并且样本方差具有相似性。T检验有多种变体,包括独立样本T检验、配对样本T检验和单样本T检验,针对不同实验设计和数据类型选择适当方法至关重要。
实现T检验的Python代码如下:
python
import numpy as np
import scipy.stats as stats
# 示例数据
data1 = np.array([1, 2, 3, 4, 5])
data2 = np.array([2, 3, 4, 5, 6])
# 独立样本T检验
t_statistic, p_value = stats.ttest_ind(data1, data2)
print(f"T统计量:{ t_statistic}")
print(f"显著性水平:{ p_value}")
# 根据p值判断差异显著性
if p_value < 0.:
print("两个样本的均值存在显著差异")
else:
print("两个样本的均值无显著差异")
运行上述代码,将输出T统计量和显著性水平。根据p值判断,若p值小于0.,则可认为两个样本的均值存在显著差异;否则,认为两者均值无显著差异。
实现效果
根据上述代码,执行T检验后,得到的输出信息如下:
python
T统计量:-0.
显著性水平:0.
根据输出结果,T统计量为-0.,显著性水平为0.。由于p值大于0.,我们无法得出两个样本均值存在显著差异的结论。因此,可以判断在置信水平为0.时,两个样本的均值无显著差异。
分钟!用Python实现简单的人脸识别技术(附源码)
Python实现简单的人脸识别技术,主要依赖于Python语言的胶水特性,通过调用特定的库包即可实现。这里介绍的是一种较为准确的实现方法。实现步骤包括准备分类器、引入相关包、创建模型、以及最后的人脸识别过程。首先,需确保正确区分人脸的分类器可用,可以使用预训练的模型以提高准确度。所用的包主要包括:CV2(OpenCV)用于图像识别与摄像头调用,os用于文件操作,numpy进行数学运算,PIL用于图像处理。
为了实现人脸识别,需要执行代码以加载并使用分类器。执行“face_detector = cv2.CascadeClassifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”时,确保目录名中无中文字符,以免引发错误。这样,程序就可以识别出目标对象。
然后,选择合适的算法建立模型。本次使用的是OpenCV内置的FaceRecognizer类,包含三种人脸识别算法:eigenface、fisherface和LBPHFaceRecognizer。LBPH是一种纹理特征提取方式,可以反映出图像局部的纹理信息。
创建一个Python文件(如trainner.py),用于编写数据集生成脚本,并在同目录下创建一个文件夹(如trainner)存放训练后的识别器。这一步让计算机识别出独特的人脸。
接下来是识别阶段。通过检测、校验和输出实现识别过程,将此整合到一个统一的文件中。现在,程序可以识别并确认目标对象。
通过其他组合,如集成检测与开机检测等功能,可以进一步扩展应用范围。实现这一过程后,你将掌握Python简单人脸识别技术。
若遇到问题,首先确保使用Python 2.7版本,并通过pip安装numpy和对应版本的opencv。针对特定错误(如“module 'object' has no attribute 'face'”),使用pip install opencv-contrib-python解决。如有疑问或遇到其他问题,请随时联系博主获取帮助。
硬核福利量化交易神器talib中个技术指标的Python实现(附全部源码)
本文将带您深入学习纯Python、Pandas、Numpy与Math实现TALIB中的个金融技术指标,不再受限于库调用,从底层理解指标原理,提升量化交易能力。
所需核心库包括:Pandas、Numpy与Math。重要提示:若遇“ewma无法调用”错误,建议安装Pandas 0.版本,或调整调用方式。
我们逐一解析常见指标:
1. 移动平均(Moving Average)
2. 指数移动平均(Exponential Moving Average)
3. 动量(Momentum)
4. 变化率(Rate of Change)
5. 均幅指标(Average True Range)
6. 布林线(Bollinger Bands)
7. 转折、支撑、阻力点(Trend, Support & Resistance)
8. 随机振荡器(%K线)
9. 随机振荡器(%D线)
. 三重指数平滑平均线(Triple Exponential Moving Average)
. 平均定向运动指数(Average Directional Movement Index)
. MACD(Moving Average Convergence Divergence)
. 梅斯线(High-Low Trend Reversal)
. 涡旋指标(Vortex Indicator)
. KST振荡器(KST Oscillator)
. 相对强度指标(Relative Strength Index)
. 真实强度指标(True Strength Index)
. 吸筹/派发指标(Accumulation/Distribution)
. 佳庆指标(ChaiKIN Oscillator)
. 资金流量与比率指标(Money Flow & Ratio)
. 能量潮指标(Chande Momentum Oscillator)
. 强力指数指标(Force Index)
. 简易波动指标(Ease of Movement)
. 顺势指标(Directional Movement Index)
. 估波指标(Estimation Oscillator)
. 肯特纳通道(Keltner Channel)
. 终极指标(Ultimate Oscillator)
. 唐奇安通道指标(Donchian Channel)
参考资料:乐学偶得系列笔记,开源项目ultrafinance。深入学习并应用这些指标,将大大提升您的量化交易与金融分析技能。