1.搞懂epoll和select和poll的区别|Linux高并发网络编程
2.物联网设备常见的web服务器——uhttpd源码分析(二)
3.Nginx源码分析 - Event事件篇 - Epoll事件模块
4.底层原理epoll源码分析,还搞不懂epoll的看过来
5.深入理解Linux的epoll机制
6.select,poll,epoll的区别以及使用方法
搞懂epoll和select和poll的区别|Linux高并发网络编程
在深入理解Linux高并发网络编程中,理解epoll、select和poll的黄页系统源码原理至关重要。它们都是多路复用机制,让单个线程能同时处理多个socket的I/O事件,但实现方式有所不同。
首先,select和poll的共同点是,用户进程将待监控的socket的描述符(fd)传递给内核,内核会检查这些socket是否有活动。如果没有活动,线程会阻塞,等待socket被唤醒。它们的局限性在于,select的fd集合大小有的限制,而poll虽然改善了fd结构,但实际使用中已不太常见。
epoll则是在优化上做了重大改进。它在内核中维护一个socket集合,通过epoll_ctl动态添加或删除socket,避免了每次调用都拷贝描述符。epoll使用红黑树存储socket,当socket有数据时,回调仅在ready_list中唤醒,减少了无用遍历。此外,epoll还利用内存映射技术,避免了拷贝,提高了效率。
ET和LT模式是epoll的不同实现。ET是边沿触发,socket被读取事件后不再加入ready_list,若后续出现数据包,需要新事件触发。而LT是水平触发,每次读取后socket会再次加入ready_list,确保不会错过后续数据包。
理解这些原理后,尽管源码阅读和深入探究是提升理解的途径,但到这个程度,基本能应对大部分场景。对于更深入的学习,视频课程是个不错的选择。
物联网设备常见的web服务器——utl` 函数通过改变已打开文件的性质来实现对文件的控制,具体操作包括改变描述符的属性,为后续的服务器操作提供灵活性。关于这一函数的使用,详细内容可参考相关技术文档。
`uh_setup_listeners` 函数在服务器配置中占有重要地位,主要关注点在于设置监听器的回调函数。这一过程确保了当通过 epoll 有数据到达时,能够调用正确的处理函数。这一环节是实现高效服务器响应的关键步骤。
`setsockopt` 函数被用于检查网络异常后的操作,通过设置选项层次(如 SOL_SOCKET、IPPROTO_TCP 等)和特定选项的值,实现对网络连接的优化与控制。此功能的详细解释和示例请查阅相关开源社区或技术资料。
`listener_cb` 函数是 uHTTPd 的关键回调函数之一,它在 epoll 事件发生时被调用,用于处理客户端连接。其后,`uh_accept_client` 函数负责实际的连接接受过程,通过 `calloc` 函数分配内存空间,131十进制源码并返回指向新分配内存的指针。这一步骤确保了分配的内存空间被初始化为零,为后续数据处理做好准备。
`accept` 函数在客户端连接请求处理中扮演重要角色,它从服务器监听的 socket 中接收新的连接请求,并返回一个用于与客户端通信的新的套接字描述符。对于这一函数的具体实现和使用细节,可以参考相关技术论坛或开发者文档。
`getsockname` 函数用于服务器端获取相关客户端的地址信息,这对于维护连接状态和进行数据传输具有重要意义。此函数的详细用法和示例可查阅相关技术资源。
`ustream_fd_init` 函数通过回调函数 `client_ustream_read_cb` 实现客户端数据的真正读取,而 `client_ustream_read_cb` 则负责操作从客户端读取的数据,确保数据处理的高效性和准确性。
Nginx源码分析 - Event事件篇 - Epoll事件模块
本文重点解析Nginx源码中的epoll事件模块,作为事件模块家族的一员,epoll以其高效性广受开发者喜爱。 Nginx的epoll事件模块位于源码文件 /event/module/ngx_epoll_module.c 中。一、epoll模块的数据结构
epoll模块包含以下三个关键数据结构:ngx_epoll_commands: epoll模块命令集
ngx_epoll_module_ctx: epoll模块上下文
ngx_epoll_module: epoll模块配置
二、epoll模块的初始化
在配置文件初始化阶段,epoll模块的初始化工作主要在核心函数 ngx_events_block 中完成。 随后,ngx_event_process_init 函数负责执行模块的初始化操作,ngx_epoll_init 用于具体实现epoll模块的初始化。三、核心函数
epoll模块的关键功能体现在 ngx_epoll_process_events 函数,此函数实现了事件的收集和分发功能,是Nginx处理事件的核心。以上是对Nginx源码中epoll事件模块的简要分析。
底层原理epoll源码分析,还搞不懂epoll的看过来
Linux内核提供关键epoll操作通过四个核心函数:epoll_create()、epoll_ctl()、epoll_wait()和epoll_event_callback()。操作系统内部使用epoll_event_callback()来调度epoll对象中的事件,此函数对理解epoll如何支持高并发连接至关重要。简化版TCP/IP协议栈在GitHub上实现epoll逻辑,存放关键函数的文件是[src ty_epoll_rb.c]。
epoll的实现包含两个核心数据结构:epitem和eventpoll。epitem由rbn和rdlink组成,前者为红黑树节点,后者为双链表节点,实现事件对象的红黑树与双链表两重管理。eventpoll包含rbr和rdlist,分别指向红黑树根和双链表头,管理所有epitem对象。
深入分析四个关键函数:
epoll_create():创建epoll对象,逻辑概括为六步。
epoll_ctl():根据用户传入参数构建epitem对象,依据操作类型(ADD、MOD、DEL)决定epitem在红黑树中的插入、更新或删除。
epoll_wait():检查双链表中是否有节点,若有填充用户指定内存,无则循环等待事件触发,调用epoll_event_callback()插入新节点。
epoll_event_callback():内核中被调用,用于处理服务器触发的五种特定情况,并将红黑树节点插入双链表。
总结epoll底层实现,关键在于两个数据结构,分别管理事件与对象关系。epoll通过红黑树与双链表高效组织事件,确保高并发场景下的高效处理。
深入理解Linux的众赢指标公式源码epoll机制
在Linux系统之中有一个核心武器:epoll池,在高并发的,高吞吐的IO系统中常常见到epoll的身影。IO多路复用在Go里最核心的是Goroutine,也就是所谓的协程,协程最妙的一个实现就是异步的代码长的跟同步代码一样。比如在Go中,网络IO的read,write看似都是同步代码,其实底下都是异步调用,一般流程是:
write(/*IO参数*/)请求入队等待完成后台loop程序发送网络请求唤醒业务方Go配合协程在网络IO上实现了异步流程的同步代码化。核心就是用epoll池来管理网络fd。
实现形式上,后台的程序只需要1个就可以负责管理多个fd句柄,负责应对所有的业务方的IO请求。这种一对多的IO模式我们就叫做IO多路复用。
多路是指?多个业务方(句柄)并发下来的IO。
复用是指?复用这一个后台处理程序。
站在IO系统设计人员的角度,业务方咱们没办法提要求,因为业务是上帝,只有你服从的份,他们要创建多个fd,那么你就需要负责这些fd的处理,并且最好还要并发起来。
业务方没法提要求,那么只能要求后台loop程序了!
要求什么呢?快!快!快!这就是最核心的要求,处理一定要快,要给每一个fd通道最快的感受,要让每一个fd觉得,你只在给他一个人跑腿。
那有人又问了,那我一个IO请求(比如write)对应一个线程来处理,这样所有的IO不都并发了吗?是可以,但是有瓶颈,线程数一旦多了,性能是反倒会差的。
这里不再对比多线程和IO多路复用实现高并发之间的区别,详细的可以去了解下nginx和redis高并发的秘密。
最朴实的实现方式?我不用任何其他系统调用,能否实现IO多路复用?
可以的。那么写个for循环,每次都尝试IO一下,读/写到了就处理,读/写不到就sleep下。这样我们不就实现了1对多的IO多路复用嘛。
whileTrue:foreach句柄数组{ read/write(fd,/*参数*/)}sleep(1s)慢着,有个问题,上面的程序可能会被卡死在第三行,使得整个系统不得运行,为什么?
默认情况下,我们没有加任何参数create出的句柄是阻塞类型的。我们读数据的时候,如果数据还没准备好,是会需要等待的,当我们写数据的时候,如果还没准备好,默认也会卡住等待。所以,在上面伪代码第三行是可能被直接卡死,而导致整个线程都得到不到运行。
举个例子,现在有,徐矿伟指标源码,这3个句柄,现在读写都没有准备好,只要read/write(,/*参数*/)就会被卡住,但,这两个句柄都准备好了,那遍历句柄数组,,的时候就会卡死在前面,后面,则得不到运行。这不符合我们的预期,因为我们IO多路复用的loop线程是公共服务,不能因为一个fd就直接瘫痪。
那这个问题怎么解决?
只需要把fd都设置成非阻塞模式。这样read/write的时候,如果数据没准备好,返回EAGIN的错误即可,不会卡住线程,从而整个系统就运转起来了。比如上面句柄还未就绪,那么read/write(,/*参数*/)不会阻塞,只会报个EAGIN的错误,这种错误需要特殊处理,然后loop线程可以继续执行,的读写。
以上就是最朴实的IO多路复用的实现了。但是好像在生产环境没见过这种IO多路复用的实现?为什么?
因为还不够高级。for循环每次要定期sleep1s,这个会导致吞吐能力极差,因为很可能在刚好要sleep的时候,所有的fd都准备好IO数据,而这个时候却要硬生生的等待1s,可想而知。。。
那有同学又要质疑了,那for循环里面就不sleep嘛,这样不就能及时处理了吗?
及时是及时了,但是CPU估计要跑飞了。不加sleep,那在没有fd需要处理的时候,估计CPU都要跑到%了。这个也是无法接受的。
纠结了,那sleep吞吐不行,不sleep浪费cpu,怎么办?
这种情况用户态很难有所作为,只能求助内核来提供机制协助来。因为内核才能及时的管理这些通知和调度。
我们再梳理下IO多路复用的需求和原理。IO多路复用就是1个线程处理多个fd的模式。我们的要求是:这个“1”就要尽可能的快,避免一切无效工作,要把所有的时间都用在处理句柄的IO上,不能有任何空转,sleep的时间浪费。
有没有一种工具,我们把一箩筐的fd放到里面,只要有一个fd能够读写数据,后台loop线程就要立马唤醒,全部马力跑起来。其他时间要把cpu让出去。
能做到吗?能,这种需求只能内核提供机制满足你。
这事Linux内核必须要给个说法?是易语言屏幕融化源码的,想要不用sleep这种辣眼睛的实现,Linux内核必须出手了,毕竟IO的处理都是内核之中,数据好没好内核最清楚。
内核一口气提供了3种工具select,poll,epoll。
为什么有3种?
历史不断改进,矬->较矬->卧槽、高效的演变而已。
Linux还有其他方式可以实现IO多路复用吗?
好像没有了!
这3种到底是做啥的?
这3种都能够管理fd的可读可写事件,在所有fd不可读不可写无所事事的时候,可以阻塞线程,切走cpu。fd有情况的时候,都要线程能够要能被唤醒。
而这三种方式以epoll池的效率最高。为什么效率最高?
其实很简单,这里不详说,其实无非就是epoll做的无用功最少,select和poll或多或少都要多余的拷贝,盲猜(遍历才知道)fd,所以效率自然就低了。
举个例子,以select和epoll来对比举例,池子里管理了个句柄,loop线程被唤醒的时候,select都是蒙的,都不知道这个fd里谁IO准备好了。这种情况怎么办?只能遍历这个fd,一个个测试。假如只有一个句柄准备好了,那相当于做了1千多倍的无效功。
epoll则不同,从epoll_wait醒来的时候就能精确的拿到就绪的fd数组,不需要任何测试,拿到的就是要处理的。
epoll池原理下面我们看一下epoll池的使用和原理。
epoll涉及的系统调用epoll的使用非常简单,只有下面3个系统调用。
epoll_createepollctlepollwait就这?是的,就这么简单。
epollcreate负责创建一个池子,一个监控和管理句柄fd的池子;
epollctl负责管理这个池子里的fd增、删、改;
epollwait就是负责打盹的,让出CPU调度,但是只要有“事”,立马会从这里唤醒;
epoll高效的原理Linux下,epoll一直被吹爆,作为高并发IO实现的秘密武器。其中原理其实非常朴实:epoll的实现几乎没有做任何无效功。我们从使用的角度切入来一步步分析下。
首先,epoll的第一步是创建一个池子。这个使用epoll_create来做:
原型:
intepoll_create(intsize);示例:
epollfd=epoll_create();if(epollfd==-1){ perror("epoll_create");exit(EXIT_FAILURE);}这个池子对我们来说是黑盒,这个黑盒是用来装fd的,我们暂不纠结其中细节。我们拿到了一个epollfd,这个epollfd就能唯一代表这个epoll池。
然后,我们就要往这个epoll池里放fd了,这就要用到epoll_ctl了
原型:
intepoll_ctl(intepfd,intop,intfd,structepoll_event*event);示例:
if(epoll_ctl(epollfd,EPOLL_CTL_ADD,,&ev)==-1){ perror("epoll_ctl:listen_sock");exit(EXIT_FAILURE);}上面,我们就把句柄放到这个池子里了,op(EPOLL_CTL_ADD)表明操作是增加、修改、删除,event结构体可以指定监听事件类型,可读、可写。
第一个跟高效相关的问题来了,添加fd进池子也就算了,如果是修改、删除呢?怎么做到时间快?
这里就涉及到你怎么管理fd的数据结构了。
最常见的思路:用list,可以吗?功能上可以,但是性能上拉垮。list的结构来管理元素,时间复杂度都太高O(n),每次要一次次遍历链表才能找到位置。池子越大,性能会越慢。
那有简单高效的数据结构吗?
有,红黑树。Linux内核对于epoll池的内部实现就是用红黑树的结构体来管理这些注册进程来的句柄fd。红黑树是一种平衡二叉树,时间复杂度为O(logn),就算这个池子就算不断的增删改,也能保持非常稳定的查找性能。
现在思考第二个高效的秘密:怎么才能保证数据准备好之后,立马感知呢?
epoll_ctl这里会涉及到一点。秘密就是:回调的设置。在epoll_ctl的内部实现中,除了把句柄结构用红黑树管理,另一个核心步骤就是设置poll回调。
思考来了:poll回调是什么?怎么设置?
先说说file_operations->poll是什么?
在fd篇说过,Linux设计成一切皆是文件的架构,这个不是说说而已,而是随处可见。实现一个文件系统的时候,就要实现这个文件调用,这个结构体用structfile_operations来表示。这个结构体有非常多的函数,我精简了一些,如下:
structfile_operations{ ssize_t(*read)(structfile*,char__user*,size_t,loff_t*);ssize_t(*write)(structfile*,constchar__user*,size_t,loff_t*);__poll_t(*poll)(structfile*,structpoll_table_struct*);int(*open)(structinode*,structfile*);int(*fsync)(structfile*,loff_t,loff_t,intdatasync);//....};你看到了read,write,open,fsync,poll等等,这些都是对文件的定制处理操作,对于文件的操作其实都是在这个框架内实现逻辑而已,比如ext2如果有对read/write做定制化,那么就会是ext2_read,ext2_write,ext4就会是ext4_read,ext4_write。在open具体“文件”的时候会赋值对应文件系统的file_operations给到file结构体。
那我们很容易知道read是文件系统定制fd读的行为调用,write是文件系统定制fd写的行为调用,file_operations->poll呢?
这个是定制监听事件的机制实现。通过poll机制让上层能直接告诉底层,我这个fd一旦读写就绪了,请底层硬件(比如网卡)回调的时候自动把这个fd相关的结构体放到指定队列中,并且唤醒操作系统。
举个例子:网卡收发包其实走的异步流程,操作系统把数据丢到一个指定地点,网卡不断的从这个指定地点掏数据处理。请求响应通过中断回调来处理,中断一般拆分成两部分:硬中断和软中断。poll函数就是把这个软中断回来的路上再加点料,只要读写事件触发的时候,就会立马通知到上层,采用这种事件通知的形式就能把浪费的时间窗就完全消失了。
划重点:这个poll事件回调机制则是epoll池高效最核心原理。
划重点:epoll池管理的句柄只能是支持了file_operations->poll的文件fd。换句话说,如果一个“文件”所在的文件系统没有实现poll接口,那么就用不了epoll机制。
第二个问题:poll怎么设置?
在epoll_ctl下来的实现中,有一步是调用vfs_poll这个里面就会有个判断,如果fd所在的文件系统的file_operations实现了poll,那么就会直接调用,如果没有,那么就会报告响应的错误码。
staticinline__poll_tvfs_poll(structfile*file,structpoll_table_struct*pt){ if(unlikely(!file->f_op->poll))returnDEFAULT_POLLMASK;returnfile->f_op->poll(file,pt);}你肯定好奇poll调用里面究竟是实现了什么?
总结概括来说:挂了个钩子,设置了唤醒的回调路径。epoll跟底层对接的回调函数是:ep_poll_callback,这个函数其实很简单,做两件事情:
把事件就绪的fd对应的结构体放到一个特定的队列(就绪队列,readylist);
唤醒epoll,活来啦!
当fd满足可读可写的时候就会经过层层回调,最终调用到这个回调函数,把对应fd的结构体放入就绪队列中,从而把epoll从epoll_wait出唤醒。
这个对应结构体是什么?
结构体叫做epitem,每个注册到epoll池的fd都会对应一个。
就绪队列很高级吗?
就绪队列就简单了,因为没有查找的需求了呀,只要是在就绪队列中的epitem,都是事件就绪的,必须处理的。所以就绪队列就是一个最简单的双指针链表。
小结下:epoll之所以做到了高效,最关键的两点:
内部管理fd使用了高效的红黑树结构管理,做到了增删改之后性能的优化和平衡;
epoll池添加fd的时候,调用file_operations->poll,把这个fd就绪之后的回调路径安排好。通过事件通知的形式,做到最高效的运行;
epoll池核心的两个数据结构:红黑树和就绪列表。红黑树是为了应对用户的增删改需求,就绪列表是fd事件就绪之后放置的特殊地点,epoll池只需要遍历这个就绪链表,就能给用户返回所有已经就绪的fd数组;
哪些fd可以用epoll来管理?再来思考另外一个问题:由于并不是所有的fd对应的文件系统都实现了poll接口,所以自然并不是所有的fd都可以放进epoll池,那么有哪些文件系统的file_operations实现了poll接口?
首先说,类似ext2,ext4,xfs这种常规的文件系统是没有实现的,换句话说,这些你最常见的、真的是文件的文件系统反倒是用不了epoll机制的。
那谁支持呢?
最常见的就是网络套接字:socket。网络也是epoll池最常见的应用地点。Linux下万物皆文件,socket实现了一套socket_file_operations的逻辑(net/socket.c):
staticconststructfile_operationssocket_file_ops={ .read_iter=sock_read_iter,.write_iter=sock_write_iter,.poll=sock_poll,//...};我们看到socket实现了poll调用,所以socketfd是天然可以放到epoll池管理的。
还有吗?
有的,其实Linux下还有两个很典型的fd,常常也会放到epoll池里。
eventfd:eventfd实现非常简单,故名思义就是专门用来做事件通知用的。使用系统调用eventfd创建,这种文件fd无法传输数据,只用来传输事件,常常用于生产消费者模式的事件实现;
timerfd:这是一种定时器fd,使用timerfd_create创建,到时间点触发可读事件;
小结一下:
ext2,ext4,xfs等这种真正的文件系统的fd,无法使用epoll管理;
socketfd,eventfd,timerfd这些实现了poll调用的可以放到epoll池进行管理;
其实,在Linux的模块划分中,eventfd,timerfd,epoll池都是文件系统的一种模块实现。
思考前面我们已经思考了很多知识点,有一些简单有趣的知识点,提示给读者朋友,这里只抛砖引玉。
问题:单核CPU能实现并行吗?
不行。
问题:单线程能实现高并发吗?
可以。
问题:那并发和并行的区别是?
一个看的是时间段内的执行情况,一个看的是时间时刻的执行情况。
问题:单线程如何做到高并发?
IO多路复用呗,今天讲的epoll池就是了。
问题:单线程实现并发的有开源的例子吗?
redis,nginx都是非常好的学习例子。当然还有我们Golang的runtime实现也尽显高并发的设计思想。
总结IO多路复用的原始实现很简单,就是一个1对多的服务模式,一个loop对应处理多个fd;
IO多路复用想要做到真正的高效,必须要内核机制提供。因为IO的处理和完成是在内核,如果内核不帮忙,用户态的程序根本无法精确的抓到处理时机;
fd记得要设置成非阻塞的哦,切记;
epoll池通过高效的内部管理结构,并且结合操作系统提供的poll事件注册机制,实现了高效的fd事件管理,为高并发的IO处理提供了前提条件;
epoll全名eventpoll,在Linux内核下以一个文件系统模块的形式实现,所以有人常说epoll其实本身就是文件系统也是对的;
socketfd,eventfd,timerfd这三种”文件“fd实现了poll接口,所以网络fd,事件fd,定时器fd都可以使用epoll_ctl注册到池子里。我们最常见的就是网络fd的多路复用;
ext2,ext4,xfs这种真正意义的文件系统反倒没有提供poll接口实现,所以不能用epoll池来管理其句柄。那文件就无法使用epoll机制了吗?不是的,有一个库叫做libaio,通过这个库我们可以间接的让文件使用epoll通知事件,以后详说,此处不表;
后记epoll池使用很简洁,但实现不简单。还是那句话,Linux内核帮你包圆了。
今天并没有罗列源码实现,以很小的思考点为题展开,简单讲了一些epoll的思考,以后有机会可以分享下异步IO(aio)和epoll能产生什么火花?Golang是怎样使用epoll池的?敬请期待哦。
原创不易,更多干货,关注:奇伢云存储
select,poll,epoll的区别以及使用方法
在Linux网络编程中,I/O多路复用技术如select、poll和epoll,旨在提高服务器与多个客户端连接的并发处理能力。原生socket的阻塞特性限制了它无法同时处理多个请求。为了解决这个问题,我们有以下选项: 1. select:最早出现在年的4.2BSD中,它允许监控多个描述符,一旦就绪即通知程序。尽管跨平台支持好,但存在最大文件描述符数量(Linux默认)的限制,且随着文件描述符增多,复制开销和扫描所有socket的开销会增加。 2. poll:年System V Release 3引入,没有select的最大文件描述符限制。同样会复制大量描述符,开销随描述符数量线性增加。poll也采用水平触发机制,但处理大量就绪描述符时效率较低。 3. epoll:Linux 2.6及以后引入,是最高效的方法。epoll支持事件回调,减少拷贝开销,对大量描述符更友好。它支持水平触发和边缘触发,边缘触发理论上性能更高,但实现复杂。epoll_wait只需检查就绪链表,而不是遍历所有描述符,节省CPU时间。 总结来说,epoll通过内核回调机制,优化了描述符的管理,降低了开销,并提供了灵活性。使用epoll时,可以借助epoll_create、epoll_ctl和epoll_wait这三个核心函数,如在echo服务器的示例中操作。具体实现和详细机制请参考《select,poll,epoll的区别以及使用方法》文章及源代码。Linux内核源码解析---EPOLL实现4之唤醒等待进程与惊群问题
在Linux内核源码的EPOLL实现中,第四部分着重探讨了数据到来时如何唤醒等待进程以及惊群问题。当网卡接收到数据,DMA技术将数据复制到内存RingBuffer,通过硬中断通知CPU,然后由ksoftirqd线程处理,最终数据会进入socket接收队列。虽然ksoftirqd的创建过程不在本节讨论,但核心是理解数据如何从协议层传递到socket buffer。
在tcp_ipv4.c中,当接收到socket buffer时,会首先在连接表和监听表中寻找对应的socket。一旦找到,进入tcp_rcv_established函数,这里会检查socket是否准备好接收数据,通过调用sock_data_ready,其初始值为sock_def_readable,进而进入wake_up函数,唤醒之前挂上的wait_queue_t节点。
在wake_up方法中,会遍历链表并回调ep_poll_callback,这个函数是epoll的核心逻辑。然而,如果epoll的设置没有启用WQ_FLAG_EXCLUSIVE,就会导致惊群效应,即唤醒所有阻塞在当前epoll的进程。这在default_wake_function函数中体现,如果没有特殊标记,进程会立即被唤醒并进入调度。
总结来说,epoll的唤醒过程涉及socket buffer、协议层处理、链表操作以及回调函数,其中惊群问题与默认的唤醒策略密切相关。理解这些细节,有助于深入理解Linux内核中EPOLL的异步操作机制。
Redis——Epoll网络模型
Redis 的高效性在于其使用多路复用技术管理大量连接,通过单线程事件循环处理请求,实现每秒数万 QPS 的性能。在深入了解 Redis 的 Epoll 实现之前,需要先对 Epoll 有清晰的认识。上一篇文章已对此进行深入浅出的讲解,涉及 select、poll、epoll 的实现。
在掌握了 Epoll 的核心原理后,让我们深入 Redis 如何具体利用 Epoll。通过查阅 Redis 5.0.0 版本的源码,我们可以清楚地看到 Redis 如何实现 Epoll。通过本文,我们重点探讨以下三个关键点:
1. Epoll 是 Linux 内核提供的一种高效事件多路复用机制,核心方法有三个。它通过红黑树、双向链表和事件回调机制实现高效率。
2. Redis 采用 Epoll 实现了 IO 多路复用,其原理是利用 Epoll 进行事件监听,通过事件循环处理各种请求。
3. Redis 的事件驱动机制处理网络 IO 和时间事件,采用成熟的 I/O 多路复用模型(如 select、epoll)进行文件事件处理,对模型进行封装。
事件驱动的核心组件在 src/ae.c 文件中实现,它通过 aeCreateEventLoop、aeMain 和 aeDeleteEventLoop 函数管理事件循环。aeMain 函数是事件循环的主体,调用 aeProcessEvents 处理就绪事件。
Redis 采用自定义的事件驱动库 ae_event 实现 IO 多路复用,支持 select、epoll、evport 和 kqueue 等技术。在不同的操作系统上,Redis 会选择合适的多路复用技术。
Redis 的实现细节如下:
1. initServerConfig 函数初始化服务器配置,确保内部数据结构和参数正确。
2. initServer 函数创建事件管理器 aeEventLoop。
3. aeCreateEventLoop 创建事件管理器并初始化关键属性,如事件表、就绪事件数组等。
4. aeCreateFileEvent 注册文件事件到底层多路复用系统。
5. aeMain 作为事件循环的主体,无限循环处理文件事件和时间事件。
6. aeProcessEvents 处理就绪事件,调用底层多路复用实现。
Redis 的 Epoll 实现展示了其对底层技术的深入理解和灵活应用,通过高效的事件处理机制实现了高性能。