本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【阅读mongodb源码分析】【cms10源码】【下拉词PHP源码】vector源码原理

2024-12-29 21:41:21 来源:娱乐 分类:娱乐

1.从源码理解vector赋值操作符的源码原理实现
2.从应用到源码理解STL反向迭代器
3.Java集合-Vector介绍、扩容机制、源码原理源码分析
4.STL源码剖析总结笔记(3):vector初识
5.STL源码学习(3)- vector详解

vector源码原理

从源码理解vector赋值操作符的源码原理实现

       深入解析vector赋值操作符实现逻辑

       通过基准测试得知,vector赋值操作符具有最高效率。源码原理接下来,源码原理我们将从源代码角度探讨实现细节。源码原理阅读mongodb源码分析

       先看测试代码,源码原理构建一个包含个元素的源码原理vector作为源数据,并声明目标vector,源码原理将源数据赋值给目标vector。源码原理

       STL源码中,源码原理非自复制情况,源码原理首先拷贝内存分配器,源码原理然后调用内部函数assign。源码原理assign函数接收数据起始和终止指针作为参数,源码原理注意指针而非迭代器,这在后续文章中有详述。

       assign关键实现,计算源数据元素总数,通过两个指针减法得出,这一步骤对理解复制过程至关重要。

       distance函数实现,通过迭代器类型萃取判断vector是否支持随机访问,返回元素数量。此函数通过指针直接减法计算元素个数。cms10源码

       了解容器容量概念,vector有size和capacity两个参数,分别表示当前元素数和最大容量。

       assign中,通过capacity比较源数据大小,若容量足够,则直接写入数据,否则需申请新内存。

       复制过程分两步:先记录复制后vector的size是否增长,然后将源数据范围内的元素复制至当前容器,最后根据size变化决定是否执行析构或构造操作。

       复制前后容器状态示意图,展示容器大小增长和不增长两种情况。

       疑惑点:在C语言中,数据直接拷贝无需对象概念,而在C++中,对象包含数据和行为,复制涉及构造和析构。

       C++对象生命周期管理,构造和析构遵循特定调用规则,复制操作需手动执行构造或析构以适应内存变化。

       当源数据小于容器容量时,直接复制;容量不足时,释放当前内存,下拉词PHP源码申请新内存进行复制。

       vector复制过程细节繁多,设计复杂。后续文章将探讨其他复制方法,并横向对比性能差异。

从应用到源码理解STL反向迭代器

       在实际应用中,我们可能需要从序列容器(如vector)的尾部移除不满足特定条件的部分元素。这通常涉及从尾部开始的迭代操作。然而,容器成员函数erase不接受反向迭代器作为参数。因此,我们需要将反向迭代器转换为普通迭代器。先来看看STL迭代器的分类和转换关系。

       STL迭代器主要分为用途迭代器,它们之间存在转换关系,但不是所有迭代器类型都可以相互转换。转换关系需通过迭代器的构造函数定义,有些可以直接转换,有些则需调用特定方法。

       特别地,反向迭代器到普通迭代器的转换可以通过调用反向迭代器的base()方法实现。但初版代码存在缺陷,未能按预期将元素正确删除。通过跟踪代码并参考cpp reference文档,源码分析c语言我们发现base()方法返回的迭代器实际上比预期位置靠后一个元素。

       为了修正这个问题,我们需要将通过base()方法得到的迭代器向前移动一个位置,以正确指向第一个符合移除条件的元素。修改代码后,可以确保元素按约定进行删除。

       在一般场景下,迭代器的使用主要涉及遍历访问和遍历修改元素值。对于删除和插入操作,可能需要将反向迭代器转换为普通迭代器。STL容器的erase和insert成员函数仅接受普通迭代器作为参数。

       在执行插入操作时,直接使用base()将反向迭代器转换为普通迭代器,并传入insert函数,其语义是一致的。而在删除操作中,直接使用base()转换后的迭代器可能无法正确执行,因为反向迭代器和普通迭代器在终止位置上的处理存在差异。为了修正此问题,需要手动调整,确保迭代器的有效性。

       对于反向迭代器,通过正确的反向迭代操作得到的迭代器,在不等于rend()返回的挂售商城源码迭代器时,都是指向有效值的。因此,除了rend().base()-1操作可能导致问题外,其他转换通常都是安全的。

       讨论end()迭代器的前移操作时,需要考虑是否能够安全地访问容器的尾端元素。对于随机访问迭代器,如vector容器,end()返回的迭代器可以进行前移操作,但需确保移动操作的合法性。对于双向访问迭代器如list,同样可以进行前移操作以访问尾端元素。

       结束讨论前,还需要确认iterator的-1操作是否对指向容器尾端元素的迭代器有效。在vector容器中,通过end成员函数返回的迭代器通过-1操作可以得到指向尾端元素的普通迭代器。对于list容器,其end成员函数返回的迭代器也支持前移操作。

       总结来说,支持向前移动操作的迭代器访问容器内元素的容器,其end成员函数通过前移操作可以得到一个指向容器尾端元素的迭代器。这符合双向迭代器的设定语义。通过反向迭代器的原理,我们也能验证end()函数返回的迭代器可以进行反向移动。

Java集合-Vector介绍、扩容机制、源码分析

       Java集合框架中的Vector类是一种古老的线程安全的数组列表,本文将简要介绍Vector,深入剖析其扩容机制,以及源码层面的解析。

       首先,我们来看创建Vector的方式。Vector提供了无参构造器和带初始容量和扩容增量的构造器。无参构造会设置initialCapacity为,capacityIncrement默认为数组长度的两倍。例如,调用this()或this(initialCapacity, 0),实际上是为元素数据(elementData)分配了初始容量,但后续扩容会根据capacityIncrement值调整,如未指定则每次翻倍。

       当向Vector添加元素时,会触发add方法。例如,添加第一个元素1,若数组已满,会调用ensureCapacityHelper(elementCount + 1),确保空间。此处,由于初始容量为,添加1后不需要扩容,元素直接添加到0索引。后续添加时,由于需要个位置,会进行扩容。判断条件是:新的容量减去最小需求小于0时,才会进行扩容,通常是将容量扩大为当前容量的两倍或直接扩容到满足需求的最小值。

       总的来说,Vector的扩容机制是动态的,确保在元素数量增长时,内存空间能相应扩展。源码中,add方法、ensureCapacityHelper函数和grow方法共同实现了这一机制,保证了Vector在高并发环境下的线程安全。通过理解这些细节,我们可以更好地运用Vector并优化程序性能。

STL源码剖析总结笔记(3):vector初识

       vector是c++中常用且重要的容器之一。相较于固定大小的array,vector拥有动态分配内存的特性,允许它在使用过程中随着元素的增删而自行调整大小。这种动态性使得vector在处理不可预知数据量时更为便捷。

       内部结构上,vector使用了数组作为存储基础,并通过start, finish和end of storage三个迭代器进行访问和管理空间。其中,start和finish分别指向可用空间的首端和尾端,end of storage则指向内存块的末尾。在vector大小为字节(位系统下,一个指针占4字节)的情况下,其大小为3。因此,vector可以灵活地通过迭代器定位数据的大小与位置。

       内存管理机制是vector的精华之一。当空间耗尽时,vector会自动扩展为二倍的内存容量,以容纳新增元素。此过程涉及创建新空间,复制原有数据,然后释放旧空间,确保资源的有效利用。

       vector提供了丰富的迭代器,遵循随机访问的行为,允许直接获取和修改数据,增强操作的效率。这些迭代器简化了对数据结构的遍历与修改操作。

       在添加与删除数据时,vector提供了pop_back(), erase, insert等高效方法。例如,pop_back()简单地删除尾部元素,erase允许清除一个范围内的数据,并通过复制来维持数据的连续性。insert操作根据具体需求进行数据的插入与调整,确保结构的完整性与数据的正确性。

       综上,vector以其灵活的内存管理和高效的数据操作,成为学习STL和掌握容器结构的理想选择。其清晰的内部机制和丰富的功能特性,为程序设计提供了强大的支持。

STL源码学习(3)- vector详解

       STL源码学习(3)- vector详解

       vector的迭代器与数据类型:vector内部的连续存储结构使得任何类型的数据指针都可以作为其迭代器。通过迭代器,可以执行诸如指针操作,如访问元素值。

       vector定义了两个迭代器start和finish,分别指向元素的起始和终止地址,同时还有一个end_of_storage标记空间的结束位置。vector的容量保证大于等于已分配元素空间,提供了获取空间大小的函数,如front和back的值以引用返回,更高效。

       空间配置原理:STL中的vector使用SGI STL容器的二级空间配置器。vector头部包含配置信息,如data_allocator作为空间配置器的别名。简单配置器(simple_alloc)是封装了高级和低级配置器调用的抽象类。

       构造函数与内存管理:vector通过空间配置器创建元素。构造函数允许预分配并初始化元素,fill_initialize用于调整空间范围,allocate_and_fill则分配空间并填充。这个过程涉及data_allocator的allocate函数,分配空间并返回起始地址。

       vector析构时,调用deallocate函数释放空间。pop_back和erase方法会移除元素并销毁相应空间,clear则清除全部元素。insert操作复杂,根据元素数量和容器状态可能需要扩容。

       插入与扩展操作:push_back在末尾插入元素,如果空间不足,可能需要扩容。insert接受三个参数,根据情况处理插入操作,可能抛出异常并销毁部分元素。

相关推荐
一周热点