1.Caffe学习(二) —— 、编译和安装Caffe(源码安装方式)
2.基于AI或传统编码方法的图像压缩开源算法汇总
Caffe学习(二) —— 、编译和安装Caffe(源码安装方式)
采用caffe源码编译安装方式说明
此方法仅适用于编译CPU支持版本的Caffe。推荐通过Git下载以获取更新及查看历史变更。
主机环境配置
系统环境:Ubuntu .
步骤一:安装依赖库与Python 2.7
步骤二:安装CUDA(注意:虽然仅编译CPU版本的Caffe,但安装CUDA时可能会遇到编译错误,富裕花园游戏源码需确保环境兼容性)
编译Caffe
步骤一:修改Make.config文件
具体配置说明请参考我的另一篇博客("Hello小崔:caffe(master分支)Makefile.config分析")
步骤二:执行make编译
测试已通过
步骤三:解决编译过程中的错误
错误实例:ImportError: No module named skimage.io
解决方法:执行sudo apt-get install python-skimage
错误实例:ImportError: No module named google.protobuf.internal
解决方法:执行sudo apt-get install python-protobuf
更多错误解决办法,请参阅另一篇博客("Hello小崔:caffe编译报错解决记录")
基于AI或传统编码方法的图像压缩开源算法汇总
探索图像压缩技术的前沿,融合AI与传统编码策略,我们精选了多项开创性研究成果,旨在提升图像压缩的效率与视觉质量。让我们一同探索这些卓越的算法:Li Mu等人的突破:年CVPR大会上,他们提出了《Learning Convolutional Networks for Content-weighted Image Compression》(论文链接),借助深度学习的自编码器,赋予内容感知,通过优化编码器、解码器和量化器,精彩互换抢红包源码赋予图像在低比特率下更清晰的边缘和丰富纹理,减少失真。其开源代码可于这里找到,基于Caffe框架。
Conditional Probability Models的革新:Mentzer等人在年的CVPR展示了他们的工作,通过内容模型提升深度图像压缩的性能,论文名为《Conditional Probability Models for Deep Image Compression》(论文链接)。
利用深度神经网络的横版过关小游戏源码力量,研究者们正在重新定义压缩标准。例如,Toderici等人在年的CVPR中展示了《Full Resolution Image Compression with Recurrent Neural Networks》,使用RNN构建可变压缩率的系统,无需重新训练(论文链接)。其开源代码可在GitHub找到,基于PyTorch 0.2.0。 创新性的安卓 读写文件源码混合GRU和ResNet架构,结合缩放加性框架,如Prakash等人年的工作所示,通过一次重建优化了率-失真曲线(论文链接),在Kodak数据集上,首次超越了JPEG标准。开源代码见这里,基于Tensorflow和CNN。 AI驱动的简单app设计源码下载图像压缩,如Haimeng Zhao和Peiyuan Liao的CAE-ADMM,借助ADMM技术优化隐性比特率,提高了压缩效率与失真性能(论文),对比Balle等人的工作(论文)有所突破。 生成对抗网络(GAN)的优化应用,如.论文,展示了在低比特率下图像压缩的显著改进,开源代码可在GitHub找到,它以简洁的方式实现高图像质量。 深度学习驱动的DSSLIC框架,通过语义分割与K-means算法,提供分层图像压缩的高效解决方案,开源代码在此,适用于对象适应性和图像检索。 传统方法如Lepton,通过二次压缩JPEG,节省存储空间,Dropbox的开源项目链接,适合JPEG格式存储优化。 无损图像格式FLIF,基于MANIAC算法,超越PNG/FFV1/WebP/BPG/JPEG,支持渐进编码,详情可在官方网站查看。 Google的Guetzli,以高效压缩提供高画质JPEG,体积比libjpeg小-%,适用于存储优化(源码)。 这些创新的算法和技术,展示了AI和传统编码方法在图像压缩领域的融合与进步,不仅提升了压缩效率,更为图像的存储和传输提供了前所未有的可能性。