1.如何系统地学习量化交易?
2.VeighNa发布v3.8.0 - IB交易接口功能强化!期权期权
3.Python读取MySQL数据库基本操作
4.Backtrader-系列教程-01-介绍
5.什么软件可以程序化交易?
6.请问国内哪家量化平台比较好?
如何系统地学习量化交易?
首先,我对这个问题是源码源码完全不知道怎么回答,为此,期权期权我专门去请教了我的量化量化老师。我理解很难有一个定量交易的源码源码极速指标源码在哪所谓的系统学习过程,定量的期权期权只是手段,交易逻辑是量化量化多样的,你可以通过形态描述,源码源码追踪市场方法,期权期权如不合理的量化量化降价,也可以把天体物理、源码源码小波分析、期权期权神经网络等复杂模型应用其中,量化量化你可以做的源码源码是K线结构上的策略,也可以做日线或每毫秒数据进行决策的策略。所有的一切目的就是为了获利,所谓量化和程序化只是实现这一目的的手段。
当你可以通过各种方法来理解定量的关注细节,比如如何避免未来的功能,如何理解每个数据的含义,测试,以及不同测试软件的优缺点,但你没法去“学习”量化交易,因为不会有人把自己真正赚钱的东西拿出来,如何赚钱必须自己去挖掘等等。
量化归根到底是什么不重要,重要的是你要利用自己的特点和优势,在你积累足够长的盘子以量化它为鸡肋之前,继续用单点深度挖掘坑,相信我,只要你有了长板(对,你应该首先把编程学牛了,达到准专业水平,这是最容易且可操作可衡量的点且受用一辈子),个劝你去撸策略的人都挂了,你的职业生涯还好好的。
一个strategist需要思考策略的思维框架,实现方式,网页扫雷源码而developer则是侧重了前后端接口,输入输出,界面设置,风控机制,平台拼接等等很多很多方面。其实很不相同吧。
VeighNa发布v3.8.0 - IB交易接口功能强化!
VeighNa社区公众号vnpy-community于-9-发布VeighNa的3.8.0版本,主要升级了IB接口功能,包括API版本升级到..1,期权交易功能强化,增加了期权链合约数据查询和IB实时隐含波动率、希腊值风险数据订阅。
已安装VeighNa Studio的用户可通过快速更新功能自动完成升级,未安装的用户可下载VeighNa Studio-3.8.0体验Python量化交易发行版。推荐Ubuntu或Mac用户使用VeighNa Docker量化交易容器解决方案。
新版本IB接口API安装需前往IB官网下载对应操作系统版本的安装程序,选择Stable版本,安装后运行命令将ibapi接口库源代码添加至Python环境。安装目录下的source\pythonclient文件夹包含ibapi接口库源代码,使用Powershell窗口运行命令即可完成安装。
数字代码回归,因为IB接入的金融市场数量众多,导致合约数量庞大,为简化合约代码,VeighNa核心框架设计上遵循国内金融市场规则,早期使用了由IB分配的ConId,但不便记忆。为了解决问题,后续版本中引入了IB合约描述信息的字符串组合描述代码。在使用描述代码2年后,收到期权交易相关问题反馈,为解决这一问题,版本3.8.0重新引入了数字代码支持,并且两种代码类型可以混合使用。
期权交易增强,IB平台期权交易功能强大,3.8.0版本的源码资讯站IB接口在连接登录时提供了查询期权功能,订阅标的合约行情时自动查询期权链合约,满足期权策略交易所需信息。同时增加了IB提供的隐含波动率和希腊值风险数据支持,可通过TickData.extra字典访问获取。
华鑫奇点接口重构,之前版本中基于奇点官方Python 3.7 API开发的vnpy_tora无法在Python 3.环境中使用,新版本使用了奇点的C++ API重构封装,实现VeighNa Station直接加载使用。
变更日志,新增功能包括K线合成器支持日K线合成、基于华鑫奇点柜台的C++ API重构vnpy_tora、期权合约查询和扩展行情数据支持等。调整了vnpy_rest/vnpy_websocket限制在Windows上必须使用Selector事件循环、vnpy_ctp升级6.6.9版本API、支持大商所1毫秒级别行情时间戳等功能。优化了多个模块性能,修复了一些已知问题,确保用户使用体验。
Python读取MySQL数据库基本操作
Python通过pymysql库进行MySQL数据库的基本操作实例演示如下: 首先,确保已安装必要的库,如pymysql。使用以下语法创建数据库连接:engine = create_engine('mysql+pymysql://用户名:密码@服务器地址:/数据库名')
接下来,我们进行数据表查询和操作。例如,查询"期权的基本信息"和"期权的风险指标"两个表:从"option_inf"表中筛选"证券名称"列。
从"option_risk"表中筛选Gamma为0的行,以及Delta大于0.5且Gamma不为0的数据。
对数据进行排序,如对"option_risk"表按"收盘价"升序,"Delta"和"证券代码"降序。 执行连接操作,包括内连接(交集)、并集、左连接和右连接,以获取所需信息。 在"option_merge"数据框中,进行基础操作,如修改"行权方式"和"交割方式",oppo手机源码添加、删除行和列,以及重新组织数据。 将修改后的option_merge数据框写入数据库。在使用数据库软件(如DBeaver或Navicat)时,确保表格式为utf8以支持中文字符。经过调整后,重新运行写入代码。 操作成功后,数据库中应可见新增和修改的数据。为了避免命名规范问题,建议使用英文命名。 想要深入了解更多金融与Python的结合应用,可以考虑购买我的书籍《Python金融量化实战固定收益类产品分析》,它不仅适合初学者,还包含丰富的源代码、视频教程和AI入门资源。Backtrader-系列教程--介绍
Backtrader是一个由Daniel Rodriguez在年1月日在GitHub上开源的Python框架,主要支持股票、期货、期权和加密货币等资产的量化回测与实盘交易,主要用于国外市场,国内用户可能需要定制化支持。Backtrader的第一个正式版本1.0.0.于年6月3日发布,至今已更新至1.9..版本,指标数量从最初的个增长到个,结合TA-Lib等第三方库,其指标计算能力非常强大。
Backtrader的成功源于作者的项目设计和持久努力,以及详实的文档支持和活跃的社区。官网backtrader.com提供了详细的文档和讨论区community.backtrader.com,供用户交流使用经验和量化策略。选择量化框架时,开源性、文档、社区活跃度和适应个人水平是关键,通过学习框架可以提升交易和编程理解。
对于量化投资爱好者,展示界面源码Backtrader是入门工具,从数据获取、清洗到策略编写和模拟交易,都能体验量化投资流程。但其源码复杂,涉及到元类和Python 2/3兼容性,以及代码风格问题。此外,由于开发者主要在国外,其一些功能设计可能与国内用户习惯不符,比如K线颜色的设置。对于新手,中文资源可能不够完整,笔者将通过AKShare和公众号数据科学实战提供Backtrader使用教程,结合AKShare数据接口实现策略,还会在知识星球数据科学家进行视频直播,欢迎关注和参与。
下面是一个利用AKShare数据和Backtrader进行回测的示例代码,更多内容将在后续文章中逐步介绍,包括面向对象编程、多股票回测、多时间粒度分析等内容,以及自定义指标和订单编写等深度讲解。
什么软件可以程序化交易?
一、金字塔决策交易系统 金字塔决策交易系统是一款方便、稳定的量化交易平台。金字塔决策交易系统拥有海量的金融数据、多种策略研究平台、严谨易用的回测框架、稳定的模拟交易。面向交易速度设计,对接券商、期货、外盘实盘交易通道,同时支持全品种,跨市场的策略交易。为量化交易投资者提供行情、财务、回测、交易等一站式量化平台。 二、天勤量化 TqSdk是一个由信易科技发起并贡献主要代码的开源 python库。依托快期多年积累成熟的交易及行情服务器体系 ,TqSdk支持用户使用很少的代码量构建各种类型的量化交易策略程序,并提供包含历史数据-实时数据-开发调试-策略回测-模拟交易-实盘交易-运行监控-风险管理的全套解决方案。 TqSdk提供当前所有可交易合约从上市开始的全部Tick数据和K线数据;支持数十家期货公司的实盘交易;支持模拟交易;支持 Tick级和K线级回测,支持复杂策略回测;提供近百个 技术指标函数及源码;用户无须建立和维护数据库,行情和交易数据全在内存数据库 , 无访问延迟;优化支持 pandas 和 numpy 库;无强制框架结构,支持任意复杂度的策略,在一个交易策略程序中使用多个品种的K线/实时行情并交易多个品种。 三、交易开拓者TBQuant版 交易开拓者TBQuant版,是一款支持证券、期货、外盘市场的中高端专业投资者的专业交易软件。除多帐户交易终端功能外,还拥有丰富的程序化交易功能。用户可以简单、快速的将自己的交易思想转化为计算机代码,形成自己的交易策略,让计算机辅助用户执行交易。是国内最早能够接入证券、期货市场进行自动交易的程序化交易软件。 交易开拓者TBQuant版完备的数据库。涵盖宏观、企业财务数据、板块、复权等等基础数据;完整的事件驱动机制,支持OnBar、OnOrder等;数据源的自动对齐机制;丰富的数据类型,支持数组MAP等多种数据类型;强大的系统函数支持多元线性回归等;策略雷达和公式选股;策略生成器无须编码实现量化策略;期权的T型报价、组合报价和自定义报价;丰富的系统指数和自定义指数;后复权的全面支持。 四、MultiCharts MultiCharts,是专业程序化交易软件,支持股票、期货、期权,提供量化分析选股,能自由编写策略,实现准确的数据回测,稳定执行自动交易期货和股票。 Multicharts(简称 MC)提供国内期货(中金所、上期所、大商所、郑商所、上海能源)、国外期货(香港交易所、芝加哥交易所、伦敦交易所、新加坡交易所等)、国内A股、国内期权四大块的实时行情数据和交易接口。满足跨市策略组合的需求。Multicharts(简称 MC)历史行情数据用户可以直接下载到本地计算机,接收的实时行情数据直接存在本地,策略计算完全在用户的计算机完成,保证策略不会泄露;完善的策略间通信机制。请问国内哪家量化平台比较好?
推荐澎博财经的真格量化。云端运行,行情和交易速度都经过专业优化。
支持期货、期权和ETF的tick级别回测。
有完善的文档和培训教程。
支持编程语言为Python2.7和Python3.5.
上手很快,对用户非常友好。
基于聚宽平台进行量化交易策略(三重滤网)回测
为了实现跨品种、跨周期的复杂交易策略回测,从传统的通达信和TradingView转向量化交易平台是必要的。国内众多量化平台如聚宽提供了广泛的选择,涵盖股票、期货、期权等交易品种。本文将以聚宽平台为例,探讨三重滤网策略的编写、回测和优化。
在量化交易中,借助统计学和数学方法,通过计算机程序分析市场数据。例如,见底三绝策略需要明确的量化标准,然后转化为可编程逻辑进行回测验证。量化交易的价值在于,它能快速、准确地评估策略的有效性,以及在大量数据中寻找交易机会。
编写策略时,需注意处理逻辑的细节,如在每个交易日开盘前获取趋势和震荡指标数值,并确保不引入未来数据。在聚宽平台,可以利用Jupyter进行数据验证和指标计算,确保数据一致性。在策略编写阶段,需利用平台提供的技术分析指标和自定义指标,如MACD、EMA和强力指数等,根据特定规则进行交易决策。
在策略框架中,用户可以根据需求定制盘前、盘中、盘后操作,例如设置基准、手续费和动态复权。通过设置全局变量记录交易状态,最终将策略逻辑融入到预设的框架中。
在聚宽平台上,创建和管理策略的流程包括新建策略模板,如“三重滤网”,然后按照自己的交易逻辑编写和优化源代码。这样的转换为策略的执行和优化提供了强大而灵活的环境。
Python实现常见随机过程的模拟
一、常见随机过程介绍
1. 几何布朗运动(GBM):这是Black-Scholes在年引入的期权定价过程的基础,尽管存在一些缺陷和与实证研究的冲突,GBM仍然是期权和衍生品估值的关键过程。
2. CIR模型:这个平方根扩散过程,由Cox, Ingersoll和Ross在年提出,用于描述均值回复的量,如利率或波动率,并且保持为正数。
3. 跳跃扩散过程(Jump Diffusion):Merton在年首次提出,将几何布朗运动与对数正态分布的跳动成分相结合,允许我们更好地评估如短期虚值(OTM)期权的定价,特别是当需要考虑在较大跳动可能性下进行定价。
4. Heston模型:Heston在年提出了一种描述标的资产波动率变化的数学模型,它假设资产收益率的波动率不是恒定的,而是遵循一个随机过程。
5. SABR模型:SABR模型由Hagan在年提出,它是一种随机波动率模型,假设隐含波动率是几何布朗运动,并且将隐含波动率设置为标的资产价格和期权行权价的函数,融合了随机波动率模型和局部波动率模型的思路,更准确地描绘了符合市场特征的隐含波动率曲线。
二、常见随机过程的模拟
1. 几何布朗运动
几何布朗运动的随机微分方程如下,意味着我们在等价鞅测度下进行操作:
其中,Wt是布朗运动,μ和σ为常数,εt服从正态分布(期望为0,方差为1)。
通过欧拉离散化得到离散时间模型,用于模拟证券价格。
案例分析1
模拟证券初始价格为(日收益率均值为0.,波动率为0.),时间为1年,步长以日为单位,次数为次的几何布朗运动价格。
注最终股价大致服从对数正态分布。
注股价走势服从随机布朗运动。
2. 平方根扩散过程(CIR模型)
CIR模型(Square-Root Diffusion)由Cox-Ingersoll和Ross在年提出,用于模拟随机短期利率。其随机微分方程如下:
参数解释:θ为平均利率;xt为现行短期利率;κ为调整速率;σ√xt表示利率较高时波动率较大。
欧拉离散化后的方程用于模拟最终利率。
案例分析2
模拟初始利率为0.,均值回归系数κ=3.0,长期均值项θ=0.,波动率σ=0.1,时间为2年,步长以日为单位,次数为次的CIR模型利率。
注最终利率分布频数最多时趋向于均值θ=0.。
注模拟最终趋势趋向于均值θ=0.。
3. 跳跃扩散过程
跳跃扩散过程的随机微分方程描述为:
参数说明:μ为漂移率;σ为证券波动率;Qt为跳跃强度为λ的泊松过程;η-1为跳跃高度;κ为跳跃均值v的预期;σJ为跳跃波动率。
欧拉离散化后的方程用于模拟证券价格的跳跃扩散过程。
案例分析3
模拟证券价格的跳跃扩散过程,初始价格,漂移率μ=0.,收益率波动率σ=0.2,跳跃强度λ=0.,预期跳跃均值v=-0.6,跳跃强度波动率σJ=0.,时间为1年,步长以日为单位,模拟次数为次的股票价格。
注最终价格呈现双峰的直方频数图。
三、随机波动率模型(Heston Model)
SABR模型(SABR Model)
更多详细内容,欢迎查阅作者的书籍:《Python金融量化实战固定收益类产品分析》,本书适合金融与科技结合的Python应用入门,包含丰富配套资源如源代码、视频导读和AI入门资料。