1.mimikatz源码分析-lsadump模块(注册表)
2.死磕以太坊源码分析之Kademlia算法
3.HashMap实现原理一步一步分析(1-put方法源码整体过程)
4.Redis7.0源码阅读:哈希表扩容、哈希哈希缩容以及rehash
5.hash / hashtable(linux kernel 哈希表)
6.文件哈希计算工具
mimikatz源码分析-lsadump模块(注册表)
mimikatz是开奖开奖一款内网渗透中的强大工具,本文将深入分析其lsadump模块中的源码源码sam部分,探索如何从注册表获取用户哈希。查询
首先,哈希哈希简要了解一下Windows注册表hive文件的开奖开奖TB锁仓交易源码结构。hive文件结构类似于PE文件,源码源码包括文件头和多个节区,查询每个节区又有节区头和巢室。哈希哈希其中,开奖开奖巢箱由HBASE_BLOCK表示,源码源码巢室由BIN和CELL表示,查询整体结构被称为“储巢”。哈希哈希通过分析hive文件的开奖开奖结构图,可以更直观地理解其内部组织。源码源码
在解析过程中,需要关注的关键部分包括块的签名(regf)和节区的签名(hbin)。这些签名对于定位和解析注册表中的数据至关重要。
接下来,深入解析mimikatz的解析流程。在具备sam文件和system文件的情况下,主要分为以下步骤:获取注册表system的句柄、读取计算机名和解密密钥、获取注册表sam的句柄以及读取用户名和用户哈希。若无sam文件和system文件,mimikatz将直接通过官方API读取本地机器的注册表。
在mimikatz中,会定义几个关键结构体,包括用于标识操作的注册表对象和内容的结构体(PKULL_M_REGISTRY_HANDLE)以及注册表文件句柄结构体(HKULL_M_REGISTRY_HANDLE)。这些结构体包含了文件映射句柄、映射到调用进程地址空间的位置、巢箱的起始位置以及用于查找子键和子键值的键巢室。
在获取注册表“句柄”后,接下来的任务是获取计算机名和解密密钥。密钥位于HKLM\SYSTEM\ControlSet\Current\Control\LSA,通过查找键值,将其转换为四个字节的密钥数据。利用这个密钥数据,mimikatz能够解析出最终的密钥。
对于sam文件和system文件的操作,主要涉及文件映射到内存的过程,通过Windows API(CreateFileMapping和MapViewOfFile)实现。这些API使得mimikatz能够在不占用大量系统资源的情况下,方便地处理大文件。
在获取了注册表系统和sam的句柄后,mimikatz会进一步解析注册表以获取计算机名和密钥。体育竞猜网 源码对于密钥的获取,mimikatz通过遍历注册表项,定位到特定的键值,并通过转换宽字符为字节序列,最终组装出密钥数据。
接着,解析过程继续进行,获取用户名和用户哈希。在解析sam键时,mimikatz首先会获取SID,然后遍历HKLM\SAM\Domains\Account\Users,解析获取用户名及其对应的哈希。解析流程涉及多个步骤,包括定位samKey、获取用户名和用户哈希,以及使用samKey解密哈希数据。
对于samKey的获取,mimikatz需要解密加密的数据,使用syskey作为解密密钥。解密过程根据加密算法(rc4或aes)有所不同,但在最终阶段,mimikatz会调用系统函数对数据进行解密,从而获取用户哈希。
在完成用户哈希的解析后,mimikatz还提供了一个额外的功能:获取SupplementalCreds。这个功能可以解析并解密获取对应用户的SupplementalCredentials属性,包括明文密码及哈希值,为用户提供更全面的哈希信息。
综上所述,mimikatz通过解析注册表,实现了从系统中获取用户哈希的高效功能,为内网渗透提供了强大的工具支持。通过深入理解其解析流程和关键结构体的定义,可以更好地掌握如何利用mimikatz进行深入的安全分析和取证工作。
死磕以太坊源码分析之Kademlia算法
Kademlia算法是一种点对点分布式哈希表(DHT),它在复杂环境中保持一致性和高效性。该算法基于异或指标构建拓扑结构,简化了路由过程并确保了信息的有效传递。通过并发的异步查询,系统能适应节点故障,而不会导致用户等待过长。
在Kad网络中,每个节点被视作一棵二叉树的叶子,其位置由ID值的最短前缀唯一确定。节点能够通过将整棵树分割为连续、javaweb订单管理源码不包含自身的子树来找到其他节点。例如,节点可以将树分解为以0、、、为前缀的子树。节点通过连续查询和学习,逐步接近目标节点,最终实现定位。每个节点都需知道其各子树至少一个节点,这有助于通过ID值找到任意节点。
判断节点间距离基于异或操作。例如,节点与节点的距离为,高位差异对结果影响更大。异或操作的单向性确保了查询路径的稳定性,不同起始节点进行查询后会逐步收敛至同一路径,减轻热门节点的存储压力,加快查询速度。
Kad路由表通过K桶构建,每个节点保存距离特定范围内的节点信息。K桶根据ID值的前缀划分距离范围,每个桶内信息按最近至最远的顺序排列。K桶大小有限,确保网络负载平衡。当节点收到PRC消息时,会更新相应的K桶,保持网络稳定性和减少维护成本。K桶老化机制通过随机选择节点执行RPC_PING操作,避免网络流量瓶颈。
Kademlia协议包括PING、STORE、FIND_NODE、FIND_VALUE四种远程操作。这些操作通过K桶获得节点信息,并根据信息数量返回K个节点。系统存储数据以键值对形式,BitTorrent中key值为info_hash,value值与文件紧密相关。RPC操作中,接收者响应随机ID值以防止地址伪造,并在回复中包含PING操作校验发送者状态。
Kad提供快速节点查找机制,通过参数调节查找速度。节点x查找ID值为t的sht和lon源码节点,递归查询最近的节点,直至t或查询失败。递归过程保证了收敛速度为O(logN),N为网络节点总数。查找键值对时,选择最近节点执行FIND_VALUE操作,缓存数据以提高下次查询速度。
数据存储过程涉及节点间数据复制和更新,确保一致性。加入Kad网络的节点通过与现有节点联系,并执行FIND_NODE操作更新路由表。节点离开时,系统自动更新数据,无需发布信息。Kad协议设计用于适应节点失效,周期性更新数据到最近邻居,确保数据及时刷新。
HashMap实现原理一步一步分析(1-put方法源码整体过程)
本文分享了HashMap内部的实现原理,重点解析了哈希(hash)、散列表(hash table)、哈希码(hashcode)以及hashCode()方法等基本概念。
哈希(hash)是将任意长度的输入通过散列算法转换为固定长度输出的过程,建立一一对应关系。常见算法包括MD5加密和ASCII码表。
散列表(hash table)是一种数据结构,通过关键码值映射到表中特定位置进行快速访问。
哈希码(hashcode)是散列表中对象的存储位置标识,用于查找效率。
Object类中的hashCode()方法用于获取对象的哈希码值,以在散列存储结构中确定对象存储地址。
在存储字母时,使用哈希码值对数组大小取模以适应存储范围,防止哈希碰撞。
HashMap在JDK1.7中使用数组+链表结构,而JDK1.8引入了红黑树以优化性能。
HashMap内部数据结构包含数组和Entry对象,数组用于存储Entry对象,Entry对象用于存储键值对。
在put方法中,首先判断数组是否为空并初始化,然后计算键的哈希码值对数组长度取模,用于定位存储位置。如果发生哈希碰撞,使用链表解决。
本文详细介绍了HashMap的京东商城程序源码存储机制,包括数组+链表的实现方式,以及如何处理哈希碰撞。后续文章将继续深入探讨HashMap的其他特性,如数组长度的优化、多线程环境下的性能优化和红黑树的引入。
Redis7.0源码阅读:哈希表扩容、缩容以及rehash
当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。
扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。
扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。
哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。
rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。
在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。
综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。
hash / hashtable(linux kernel 哈希表)
哈希表,或称为散列表,是一种高效的数据结构,因其插入和查找速度的优势而备受关注。然而,其空间利用率并不固定,需要权衡。让我们通过实例来深入理解它的作用和工作原理。
想象一个场景:我们需要高效地存储和访问大量数据。首先,常规的数组方法,如普通数组和有序数组,虽然插入简单,但查找效率低,尤其是在数据量较大时。例如,查找可能需要对数千个元素进行比较。有序数组通过牺牲增删效率来提升查询,但数组空间固定且可能浪费大量资源。
链表提供了更灵活的增删操作,但随机访问困难,适合数据频繁变动的情况。红黑树在查询和增删效率上表现优秀,但此处暂不讨论。庞大的数组虽然理论上能快速查找,但实际操作中难以实现,因为它需要预先预估并准备极大数据空间。
这时,哈希表登场了。它利用哈希函数将数据映射到一个较小的数组中,即使存在冲突(不同数据映射到同一地址),通过链表解决,仍然能显著提升查找效率。例如,即使身份证号的哈希结果可能有重复,但实际冲突相对较少,通过链表链接,平均查找次数大大减少。
使用哈希表包括简单的步骤:包含头文件,声明和初始化哈希表,添加节点,以及通过哈希键查找节点。在实际源码中,如Linux kernel的hash.h和hashtable.h文件,哈希表的初始化和操作都是基于这些步骤进行的。
总结来说,哈希表在大数据场景中通过计算直接定位数据,显著提高效率,尤其是在数据量增大时。如果你对Linux kernel的哈希表实现感兴趣,可以关注我的专栏RTFSC,深入探讨更多源码细节。
文件哈希计算工具
NetFileHash是一款基于C#开发的文件哈希计算工具,支持MD5、SHA1、SHA、SHA、SHA算法。
功能特点包括:视频演示、下载地址、VirusTotal检测、微步沙箱报告以及源码地址。
项目展示三个阶段:未计算、计算中、计算完成。
举例校验信息,以文件"C:\Users\Master\Desktop\FileHash.exe"为例,大小为字节,计算得到以下哈希值:
MD5: DA7CAAAA3CD8D9CBD
SHA1: DD2FECFA6E0DCEE3FC6
SHA: EAECD9BDB8BAFDACDCBFCEFB2AB
SHA: BC3EBB8CBCD6DFCFDE2DEBAFB2DCDFDEFDA7FEA
SHA: CAE7D3EE1AD7BEDBFABCDA6EBBCC4BFF5AEB2ECEE1EEA3F5B
Hermes源码分析(二)——解析字节码
前面一节 讲到字节码序列化为二进制是有固定的格式的,这里我们分析一下源码里面是怎么处理的这里可以看到首先写入的是魔数,他的值为
对应的二进制见下图,注意是小端字节序
第二项是字节码的版本,笔者的版本是,也即 上图中的4a
第三项是源码的hash,这里采用的是SHA1算法,生成的哈希值是位,因此占用了个字节
第四项是文件长度,这个字段是位的,也就是下图中的为0aa,转换成十进制就是,实际文件大小也是这么多
后面的字段类似,就不一一分析了,头部所有字段的类型都可以在BytecodeFileHeader.h中看到,Hermes按照既定的内存布局把字段写入后再序列化,就得到了我们看到的字节码文件。
这里写入的数据很多,以函数头的写入为例,我们调用了visitFunctionHeader方法,并通过byteCodeModule拿到函数的签名,将其写入函数表(存疑,在实际的文件中并没有看到这一部分)。注意这些数据必须按顺序写入,因为读出的时候也是按对应顺序来的。
我们知道react-native 在加载字节码的时候需要调用hermes的prepareJavaScript方法, 那这个方法做了些什么事呢?
这里做了两件事情:
1. 判断是否是字节码,如果是则调用createBCProviderFromBuffer,否则调用createBCProviderFromSrc,我们这里只关注createBCProviderFromBuffer
2.通过BCProviderFromBuffer的构造方法得到文件头和函数头的信息(populateFromBuffer方法),下面是这个方法的实现。
BytecodeFileFields的populateFromBuffer方法也是一个模版方法,注意这里调用populateFromBuffer方法的是一个 ConstBytecodeFileFields对象,他代表的是不可变的字节码字段。
细心的读者会发现这里也有visitFunctionHeaders方法, 这里主要为了复用visitBytecodeSegmentsInOrder的逻辑,把populator当作一个visitor来按顺序读取buffer的内容,并提前加载到BytecodeFileFields里面,以减少后面执行字节码时解析的时间。
Hermes引擎在读取了字节码之后会通过解析BytecodeFileHeader这个结构体中的字段来获取一些关键信息,例如bundle是否是字节码格式,是否包含了函数,字节码的版本是否匹配等。注意这里我们只是解析了头部,没有解析整个字节码,后面执行字节码时才会解析剩余的部分。
evaluatePreparedJavaScript这个方法,主要是调用了HermesRuntime的 runBytecode方法,这里hermesPrep时上一步解析头部时获取的BCProviderFromBuffer实例。
runBytecode这个方法比较长,主要做了几件事情:
这里说明一下,Domain是用于垃圾回收的运行时模块的代理, Domain被创建时是空的,并跟随着运行时模块进行传播, 在运行时模块的整个生命周期内都一直存在。在某个Domain下创建的所有函数都会保持着对这个Domain的强引用。当Domain被回收的时候,这个Domain下的所有函数都不能使用。
未完待续。。。
十二点哈希查找的硬件实现(一):哈希查找
一、引子:哈希查找的硬件探索 在数据检索的世界中,哈希查找如同一把神秘的钥匙,以其惊人的效率赢得了广泛应用。它通过键值的直接映射,消除了传统查找方式中对键值区分的繁琐,如在ARP表查询中的高效表现。选择一个合适的哈希函数是关键,如简单的加减乘除、取余运算,甚至位操作,都需要考量元素分布的特性。 二、碰撞解决:挑战与策略 然而,哈希查找并非一帆风顺,当多个键值映射到同一个位置时,我们面临碰撞的问题。这可能导致查询结果的不确定性。解决之道有开放定址法、链地址法,甚至还有公共溢出区和再哈希法。开放定址法与链地址法则虽能应对冲突,但时间复杂度有所增加。公共溢出区则需要额外的空间,而再哈希法尽管时间复杂度较低,却不能确保总能找到空闲位置。 三、硬件挑战与突破 在硬件层面实现哈希查找并非易事,它涉及复杂的逻辑设计和性能优化。硬件哈希表结构的比较与选择,将在后续章节中详述。感兴趣的读者可以参考我在gitee上的项目:twelvenine/hashtable-verilog,那里包含了详细的源码和性能测试结果,是我们深入理解哈希查找硬件实现的重要资源。 四、结语:期待你的参与 哈希查找的硬件之旅还在继续,每一步都需要我们深入思考和实践。如果你对这些技术有疑问,或者想要分享你的见解,欢迎在评论区留言,或者通过私信与我交流。让我们一起探索哈希查找在硬件世界中的无限可能。String源码分析(1)--哈希篇
本文基于JDK1.8,从Java中==符号的使用开始,解释了它判断的是对象的内存地址而非内容是否相等。接着,通过分析String类的equals()方法实现,说明了在比较字符串时,应使用equals()而非==,因为equals()方法可以准确判断字符串内容是否相等。
深入探讨了String类作为“值类”的特性,即它需要覆盖Object类的equals()方法,以满足比较字符串时逻辑上相等的需求。同时,强调了在覆盖equals()方法时也必须覆盖hashCode()方法,以确保基于散列的集合(如HashMap、HashSet和Hashtable)可以正常工作。解释了哈希码(hashcode)在将不同的输入映射成唯一值中的作用,以及它与字符串内容的关系。
在分析String类的hashcode()方法时,介绍了计算哈希值的公式,包括使用这个奇素数的原因,以及其在计算性能上的优势。进一步探讨了哈希碰撞的概念及其产生的影响,提出了防止哈希碰撞的有效方法之一是扩大哈希值的取值空间,并介绍了生日攻击这一概念,解释了它如何在哈希空间不足够大时制造碰撞。
最后,总结了哈希碰撞与散列表性能的关系,以及在满足安全与成本之间找到平衡的重要性。提出了确保哈希值的最短长度的考虑因素,并提醒读者在理解和学习JDK源码时,可以关注相关公众号以获取更多源码分析文章。