如何制作静态网站源码,相当于做任务,网页网页,任务任务商家发一个任务,源码源码刷手去接,网页网页,任务任务任务完成后金币落入对方的源码源码账号。。
按你问题的询问方式,你还不适合自己去做这些事,你更应该找有经验有能力的技术团队协助你完成理想。发任务接任务,需要动态处理数据库,这个不叫静态。。。
并不是一个网站的程序就叫做源码。。。虽然你可能见过这个词见过码,但不是每个网站都叫做源码。。。源码包优点
你是绝对见过代码的,你有一定的基础,所以你从心里知道这些事,并不是三言两语,三两天就可以讲的完做的完的
你需要踏踏实实实事求是的,面对这个问题,并不是你把问题说简单的了,做起来就简单了,就像有人会问:谁能简单的造个宇宙飞船我用用。。。
道理是一样的。
技术人生阅读源码——Quartz源码分析之任务的调度和执行
Quartz源码分析:任务调度与执行剖析
Quartz的调度器实例化时启动了调度线程QuartzSchedulerThread,它负责触发到达指定时间的任务。该线程通过`run`方法实现调度流程,包含三个主要阶段:获取到达触发时间的triggers、触发triggers、执行triggers对应的jobs。
获取到达触发时间的triggers阶段,通过`JobStore`接口的`acquireNextTriggers`方法获取,由`RAMJobStore`实现具体逻辑。触发triggers阶段,调用`triggersFired`方法通知`JobStore`触发triggers,处理包括更新trigger状态与保存触发过程相关数据等操作。执行triggers对应jobs阶段,真正执行job任务,先构造job执行环境,然后在子线程中执行job。
job执行环境通过`JobRunShell`提供,确保安全执行job,led全息源码捕获异常,并在任务完成后根据`completion code`更新trigger。job执行环境包含job对象、trigger对象、触发时间、上一次触发时间与下一次触发时间等数据。Quartz通过线程池提供多线程服务,使用`SimpleThreadPool`实例化`WorkerThread`来执行job任务,最终调用`Job`的`execute`方法实现业务逻辑。
综上所述,Quartz通过精心设计的线程调度与执行流程,确保了任务的高效与稳定执行,展示了其强大的任务管理能力。
源码细读-深入了解terser-webpack-plugin的实现
深入探索 terser-webpack-plugin:代码压缩与优化的秘密</ terser-webpack-plugin 是一款强大的 webpack 插件,它巧妙地融合了 terser 库的功能,旨在为你的 JavaScript 代码带来高效且优雅的压缩体验。要开始使用,只需参考官方文档中关于 minify-options</的配置指导。这款插件在 webpack 的 compilation 阶段大展身手,通过 optimizeChunkAssets</钩子实现了异步的代码优化,核心逻辑则隐藏在了名为 optimise</的神秘函数中。 优化艺术</ 在 optimise</函数的舞台,一场资源名的魔术表演正在上演。它首先从 compilation 中获取资源,接着根据 availableNumberOfCores</动态决定是否启用并行模式,创建适当的 Worker</。在这里,pLimit</起到了关键作用,它巧妙地控制并发任务的数量,确保效率与稳定性并存。挤压矩阵源码紧接着,遍历每一个 assetNames,一个个任务被 scheduleTask 准备就绪,等待着执行。 任务分解</ 而每个任务的核心 scheduleTask,就像拆解谜题一般,包含着获取 asset 信息、代码检查、minify 的选择(Worker 或主线程)、新代码生成和缓存更新,以及对资产内容的即时更新。整个过程紧凑而有序,以资源处理和并发控制为核心。 并行力量</ terser-webpack-plugin 的亮点之一就是其 parallel</功能,能根据你的计算机 CPU 核心数动态启动 worker,巧妙地利用了 jest-worker 线程池,优先选择高性能的 worker_threads 模式。它通过私有任务队列和先进先出 (FIFO) 管理机制,确保了多进程处理的高效性和一致性。 代码简化与压缩</ minify 函数的精妙之处在于,它直接调用 terser 库的强大功能,略过不必要的 comments 处理,通过出口 API 实现代码的高效压缩。这个过程既简洁又高效,确保了代码质量的提升。 全面优化流程</ terser-webpack-plugin 的优化流程井然有序:异步注册 optimizeChunkAssets</,开启多线程编译(Worker),并在 minify 阶段,利用 terser 的强大压缩能力对代码进行深度处理。而 v4 版本更是ea源码泄露增添了异步优化点,让并行处理更加灵活和高效。ListenableFuture源码解析
ListenableFuture 是 spring 中对 JDK Future 接口的扩展,主要应用于解决在提交线程池的任务拿到 Future 后在 get 方法调用时会阻塞的问题。通过使用 ListenableFuture,可以向其注册回调函数(监听器),当任务完成时,触发回调。Promise 在 Netty 中也实现了类似的功能,用于处理类似 Future 的场景。
实现 ListenableFuture 的关键在于 FutureTask 的源码解析。FutureTask 是实现 Future 接口的基础类,ListenableFutureTask 在其基础上做了扩展。其主要功能是在任务提交后,当调用 get 方法时能够阻塞当前业务线程,直到任务完成时唤醒。
FutureTask 通过在内部实现一个轻量级的 Treiber stack 数据结构来管理等待任务完成的线程。这个数据结构由 WaitNode 节点组成,每个节点代表一个等待的线程。当业务线程调用 get 方法时,会将自己插入到 WaitNode 栈中,并且在插入的同时让当前线程进入等待状态。在任务执行完成后,会遍历 WaitNode 栈,唤醒等待的线程。
为了确保并发安全,FutureTask 使用 CAS(Compare and Swap)操作来管理 WaitNode 栈。每个新插入的节点都会使用 CAS 操作与栈顶节点进行比较,并在满足条件时更新栈顶。这一过程保证了插入操作的原子性,防止了并发条件下的数据混乱。同时,插入操作与栈顶节点的更新操作相互交织,确保了数据的一致性和完整性。
在 FutureTask 中,还利用了 LockSupport 类提供的 park 和 unpark 方法来实现线程的等待和唤醒。当线程插入到 WaitNode 栈中后,通过 park 方法将线程阻塞;任务执行完成后,通过 unpark 方法唤醒线程,完成等待与唤醒的流程。
综上所述,ListenableFuture 通过扩展 FutureTask 的功能,实现了任务执行与线程等待的高效管理。通过注册监听器并利用 CAS 操作与 LockSupport 方法,实现了在任务完成时通知回调,解决了异步任务执行时的线程阻塞问题,提高了程序的并发处理能力。
Chromium setTimeout/clearTimeout 源码分析
Chromium版本.0..3中setTimeout函数的工作流程涉及大量源码,包括线程、消息循环、任务队列和操作系统定时器函数。本文仅分析setTimeout的关键步骤。
setTimeout函数通过创建包含回调函数和延时时间的action对象,调用DOMTimer::Install进行处理。DOMTimer::Install通过DOMTimerCoordinator::InstallNewTimeout向定时器哈希表timers_插入一个定时器对象,生成唯一timeout_id。
timeout_id由NextID生成,每次调用setTimeout返回递增的值,用于唯一标识每个定时器任务。timers_是一个哈希表,存放定时器对象,与任务一一对应。
创建定时器对象时,通过定时器的延时时间获取任务类型,并将回调函数与任务类型关联,最终通过web_task_runner_获取相应的任务运行器,并在TimerBase::SetNextFireTime调用web_task_runner_->PostDelayedTask提交延迟任务。
PostDelayedTask将延迟任务插入到延迟任务队列中,并更新当前线程的唤醒时间。延迟任务队列是优先队列,用于管理按延时时间排序的任务。
通过GetNextScheduledWakeUpImpl获取优先队列的队头任务,创建唤醒任务用于在线程唤醒时执行延迟任务。唤醒任务只包含延时时间,不包含回调函数。
UpdateDelayedWakeUpImpl根据新创建的唤醒任务更新唤醒任务队列。如果延迟任务队列中的任务延时时间较短,新任务可能无法立即进入唤醒任务队列。
调用操作系统定时器函数,如在Mac下调用CFRunLoopTimerSetNextFireDate,在Windows下调用SetTimer,在Android下调用timerfd_settime,在指定延时后唤醒线程。
线程睡眠后,唤醒线程执行已到期的延迟任务,将到期任务从延迟任务队列移出并加入工作队列。ThreadControllerWithMessagePumpImpl::DoWorkImpl找到并执行工作队列中的任务。
面试题:setTimeout延迟时间不准确的原因可能有:硬件层面的时间不准确、操作系统不保证定时器函数的精确性、CPU处理大量定时任务时可能出现部分任务延迟执行。
clearTimeout与clearInterval功能相同,DOMTimer::RemoveByID从timers_哈希表中移除指定timeout_id对应的定时器对象,将回调函数置空,视为任务取消。
Netty源码解析 -- FastThreadLocal与HashedWheelTimer
Netty源码分析系列文章接近尾声,本文深入解析FastThreadLocal与HashedWheelTimer。基于Netty 4.1.版本。 FastThreadLocal简介: FastThreadLocal与FastThreadLocalThread协同工作。FastThreadLocalThread继承自Thread类,内部封装一个InternalThreadLocalMap,该map只能用于当前线程,存放了所有FastThreadLocal对应的值。每个FastThreadLocal拥有一个index,用于定位InternalThreadLocalMap中的值。获取值时,首先检查当前线程是否为FastThreadLocalThread,如果不是,则从UnpaddedInternalThreadLocalMap.slowThreadLocalMap获取InternalThreadLocalMap,这实际上回退到使用ThreadLocal。 FastThreadLocal获取值步骤: #1 获取当前线程的InternalThreadLocalMap,如果是FastThreadLocalThread则直接获取,否则通过UnpaddedInternalThreadLocalMap.slowThreadLocalMap获取。#2 通过每个FastThreadLocal的index,获取InternalThreadLocalMap中的值。
#3 若找不到值,则调用initialize方法构建新对象。
FastThreadLocal特点: FastThreadLocal无需使用hash算法,通过下标直接获取值,复杂度为log(1),性能非常高效。 HashedWheelTimer介绍: HashedWheelTimer是Netty提供的时间轮调度器,用于高效管理各种延时任务。时间轮是一种批量化任务调度模型,能够充分利用线程资源。简单说,就是将任务按照时间间隔存放在环形队列中,执行线程定时执行队列中的任务。 例如,环形队列有个格子,执行线程每秒移动一个格子,则每轮可存放1分钟内的任务。任务执行逻辑如下:给定两个任务task1(秒后执行)、task2(2分秒后执行),当前执行线程位于第6格子。那么,task1将放到+6=格,轮数为0;task2放到+6=格,轮数为2。执行线程将执行当前格子轮数为0的任务,并将其他任务轮数减1。 HashedWheelTimer的缺点: 时间轮调度器的时间精度受限于执行线程的移动速度。例如,每秒移动一个格子,则调度精度小于一秒的任务无法准时调用。 HashedWheelTimer关键字段: 添加延迟任务时,使用HashedWheelTimer#newTimeout方法,如果HashedWheelTimer未启动,则启动HashedWheelTimer。启动后,构建HashedWheelTimeout并添加到timeouts集合。 HashedWheelTimer运行流程: 启动后阻塞HashedWheelTimer线程,直到Worker线程启动完成。计算下一格子开始执行的时间,然后睡眠到下次格子开始执行时间。获取tick对应的格子索引,处理已到期任务,移动到下一个格子。当HashedWheelTimer停止时,取消任务并停止时间轮。 HashedWheelTimer性能比较: HashedWheelTimer新增任务复杂度为O(1),优于使用堆维护任务的ScheduledExecutorService,适合处理大量任务。然而,当任务较少或无任务时,HashedWheelTimer的执行线程需要不断移动,造成性能消耗。另外,使用同一个线程调用和执行任务,某些任务执行时间过久会影响后续任务执行。为避免这种情况,可在任务中使用额外线程执行逻辑。如果任务过多,可能导致任务长期滞留在timeouts中而不能及时执行。 本文深入剖析FastThreadLocal与HashedWheelTimer的实现细节,旨在提供全面的技术洞察与实战经验。希望对您理解Netty源码与时间轮调度器有帮助。关注微信公众号,获取更多Netty源码解析与技术分享。2024-12-28 23:47
2024-12-28 23:30
2024-12-28 22:36
2024-12-28 22:29
2024-12-28 21:59