1.flaskģ?模码?Դ??
2.「博客应用」使用 Flask-Login 实现用户认证
3.å¨flaskä¸ä½¿ç¨jsonifyåjson.dumpsçåºå«
4.关于flask的jsonify与json.dumps的一些追溯和思考
flaskģ??Դ??
在构建Python Web应用时,Flask是板源一个轻量级的选择,它允许开发者以最小的源码投入快速搭建应用。而当涉及到构建RESTful API时,模码Flask-RESTX库提供了方便的板源方法来定义、编写和查看API文档。源码货币源码交易
Flask-RESTX是模码Flask框架的扩展,集成Swagger,板源这是源码一个强大的API文档工具。Swagger规范和完整框架用于生成、模码描述、板源调用和可视化RESTfulWeb服务的源码API文档。
安装Flask-RESTX很简单,模码通过pip命令即可完成。板源确保Flask已经在开发环境中安装,源码若未安装,四金叉副图指标源码使用相应命令进行安装。
快速开始,创建简单Flask应用并引入Flask-RESTX。这里有个例子,实现一个简单的API,包含一个HelloWorld资源类,提供GET请求响应。使用@api.expect('name')装饰器指定期望参数。
定义API文档时,使用装饰器和注解。文档自动出现在Swagger用户界面中。定义期望参数,使用api.expect装饰器。定义数据模型,使用api.model方法。外挂的源码都哪里来的模型可在API资源中使用。
Flask-RESTX提供高级功能,例如异常处理、错误处理器等。通过Flask错误处理机制定义异常处理器,返回适当HTTP状态码和错误信息。
Flask-RESTX的官方社区活跃在GitHub上,提供源代码和问题跟踪器。社区成员分享使用经验和最佳实践,解决遇到问题。
总结,Flask-RESTX是Flask框架的强大扩展,集成Swagger提供丰富的API文档支持,易于设计、实现和维护RESTfulAPI。阿里p7源码怎么写无论是初学者还是有经验的开发者,都能从Flask-RESTX的易用性和强大功能中受益。
通过本文了解,已具备构建Flask应用的基础知识。实践是学习的最好方式,动手尝试,创建自己的Flask应用吧!
「博客应用」使用 Flask-Login 实现用户认证
在 SuzyBlog 的博客应用中,我们将实现用户认证功能,使用 Flask-Login 管理用户登录和登出。首先,确保下载 SuzyBlog 的源代码,以配合本文的学习。
在前文中,虽然已经构建了博客前台,烟台孕妇吃溯源码燕窝报价但用户登录状态的判断是基于模拟数据。接下来,我们将重点关注Admin用户的登录登出功能。
1. 安全存储用户密码
为了保护用户隐私,不能明文存储数据库中的密码。使用 werkzeug.security 提供的 generate_password_hash 函数生成散列值,通过 salt 增加随机性,即使泄露也难以逆向获取密码。Admin模型中,通过 password 特性属性和 validate_password 方法来处理这些操作。
2. 注册命令行初始化Admin
SuzyBlog 不在网页上提供注册功能,而是通过自定义命令行工具初始化Admin用户。flask init-admin 命令行允许用户输入用户名和密码,通过 click 模块的密码装饰器保护用户输入。
3. Flask-Login用户认证
在应用中,Flask-Login 被用于区分管理员(如使用admin账号登录)和普通访客。创建 LoginManager 实例,设置用户加载函数,使用current_user变量记录登录状态。用户登录后,可以在模板中轻松访问当前用户信息。
3.1 登录管理
创建login视图处理登录请求,验证用户身份。登录成功后,用户将被重定向回首页。同时,我们为模板的页脚添加了登录/登出链接,使用query参数next来记录用户来源。
3.2 登入与登出操作
login视图中,处理表单提交并验证用户信息,login_user函数用于登录,logout_user用于登出。登录后,用户ID会保存在session中,而登出则删除这些信息。
3.3 视图保护
使用@login_required装饰器保护需要登录的视图,未登录用户将被重定向至登录页面。蓝本的@before_request装饰器可以为蓝本下的所有视图提供登录保护。
至此,Flask-Login的使用帮助我们完善了用户认证流程,使得SuzyBlog的权限管理更加安全和有序。
å¨flaskä¸ä½¿ç¨jsonifyåjson.dumpsçåºå«
1.Content-Typeæåºå«
jsonifyçä½ç¨å®é ä¸å°±æ¯å°æä»¬ä¼ å ¥çjsonå½¢å¼æ°æ®åºååæ为jsonå符串ï¼ä½ä¸ºååºçbodyï¼å¹¶ä¸è®¾ç½®ååºçContent-Type为application/jsonï¼æé åºååºè¿åè³å®¢æ·ç«¯ãjsonifyçé¨åæºç å¦ä¸ï¼
def jsonify(*args, **kwargs):
if __debug__:
_assert_have_json()
return current_app.response_class(json.dumps(dict(*args, **kwargs),
indent=None if request.is_xhr else 2), mimetype='application/json')
å¯ä»¥çåºjsonifyå®é ä¸ä¹æ¯ä½¿ç¨äºjson.dumpsæ¥åºååjsonå½¢å¼çæ°æ®ï¼ä½ä¸ºååºæ£æè¿åãindent表示jsonæ ¼å¼åç缩è¿ï¼è¥æ¯Ajax请æ±åä¸ç¼©è¿ï¼å 为ä¸è¬Ajaxæ°æ®æ²¡å¿ è¦ç´æ¥å±ç¤ºï¼ï¼å¦å缩è¿2æ ¼ãä½æ³å¿ ä»ç¬¬ä¸é¨åçå®éªç»ææ们已ç»çåºæ¥äºï¼ä½¿ç¨jsonifyæ¶ååºçContent-Typeå段å¼ä¸ºapplication/jsonï¼è使ç¨json.dumpsæ¶è¯¥å段å¼ä¸ºtext/htmlãContent-Typeå³å®äºæ¥æ¶æ°æ®çä¸æ¹å¦ä½çå¾ æ°æ®ï¼å¦ä½å¤çæ°æ®ï¼å¦ææ¯application/jsonï¼åå¯ä»¥ç´æ¥å½åjson对象å¤çï¼è¥æ¯text/htmlï¼åè¿è¦å°ææ¬å¯¹è±¡è½¬å为json对象ååå¤çï¼ä¸ªäººç解ï¼æ误请ææ£ï¼ã
2.æ¥ååæ°æåºå«
jsonifyå¯ä»¥æ¥ååpythonä¸çdictæé å¨åæ ·çåæ°ï¼å¦ä¸å¾ã
èjson.dumpsæ¯jsonifyå¯ä»¥å¤æ¥ålistç±»ååä¸äºå ¶ä»ç±»åçåæ°ãä½æè¯äºä¸ä¸ï¼å½¢å¼ä¸ºkey1=value1ï¼[key2=value2,...]è¿æ ·çåæ°æ¯ä¸è¡çï¼ä¼æ¥åºâTypeError: dumps() takes exactly 1 argument (0 given)âè¿ä¸é误ï¼èjsonifyä¸ä¼æ¥é并è½æ£å¸¸è¿åæ°æ®ã
æåï¼æ们å¯ä»¥ä½¿ç¨flaskä¸çmake_responseæ¹æ³æè ç´æ¥éè¿Responseç±»ï¼éè¿è®¾ç½®mimetypeåæ°æ¥è¾¾å°å使ç¨jsonifyå·®ä¸å¤çææï¼ä½å°åç¹ä»£ç ä½ä¹èä¸ä¸ºå¢ï¼åµä¸ç®æ´ä¸ç¹æ´ä¸å®¹æåºéï¼åæ°è¶å¤è°è¯åç»´æ¤å°±è¶éº»ç¦ãå½ç¶ï¼ä½¿ç¨åªä¸ªå¹¶ä¸æ¯ç»å¯¹çï¼å¿ è¦æ¶è¦æ ¹æ®å端çæ°æ®å¤çæ¹å¼æ¥å³å®ã
关于flask的jsonify与json.dumps的一些追溯和思考
有一天,我遇到了一个服务器报警问题,追踪错误栈时,发现是由于在使用 Flask 的 jsonify 函数时传入的字典中混入了 string 和 int 类型的键导致的。修改数据后,我开始思考这一设计背后的逻辑以及为何会如此设定。源码追溯路径指向 JSONDecoder、flask.json.__init__.py 及 _dump_arg_defaults。分析这部分源码,我发现项目使用的是继承自 Flask 的 JSONDecoder,稍作修改以兼容如 bson.ObjectId 和 datetime 等数据类型,其主体基于标准库中的 JSONEncoder。
进一步深入 JSONEncoder 的源码,我发现 sort_keys 的使用在 JSONEncoder._iterencode_dict 中。此时,我开始思考是否可以修改为始终使用默认的 False,以确保 key 为纯字符串。然而,官方为何没有选择这一方案?我开始在 GitHub 上寻找答案,最终在 issue 中找到了线索。在 Python 2 中确实如我所想,但在 Python 3 中,设计发生了改变。大佬们解释了背后的理由。
深入思考后,我倾向于支持 Python 3 的设计选择。首先,明确数据处理逻辑(如是否排序)是至关重要的。这里,我认为 Flask 的默认设置为 False 是个错误,应该与标准库保持一致。其次,确保数据类型的一致性是动态语言的局限性之一,这也是我越来越偏爱 Go 的原因。
从工作角度来看,我得出以下思考:永远不要依赖传入的数据,务必进行验证,尤其是在关键业务中。这不仅是对 Flask 设计的反思,也是对编程实践的提醒,强调了数据验证和明确数据处理逻辑的重要性。