1.一文了解Linux上TCP的源码几个内核参数调优
2.Linux TCP内核参数设置与调优(详细)!
3.Linux内核源码分析:Linux内核版本号和源码目录结构
4.Linux内核源码解析---EPOLL实现4之唤醒等待进程与惊群问题
5.Linux上TCP的分析几个内核参数调优
6.详细讲解Linux内核角度分析tcpdump原理(1)
一文了解Linux上TCP的几个内核参数调优
在Linux操作系统中,TCP的源码内核参数调优是一项关键任务,其中涉及的分析参数众多。针对内网环境,源码以下是分析网站开通 源码几个主要的TCP参数及其调优建议:
1. **tcp_max_syn_backlog, somaxconn, tcp_abort_on_overflow**:这些参数控制内核TCP连接缓冲队列,防止因应用处理速度慢导致连接过多而溢出。源码应适当调大Backlog值,分析以避免连接在第三次握手后被意外丢弃,源码特别是分析对于NIO应用,以确保连接稳定性。源码
2. **tcp_syn_retries**:影响连接建立时的分析超时时间,建议设置为3次重传,源码以减少超时时间,分析对于Java,源码API提供了超时设置,但注意有些库可能未做此设置,可能导致不必要的延迟。
3. **tcp_retries2**:内核计算超时时间的重传次数,对于ReadTimeout较大的情况,降低tcp_retries2有助于快速从宕机机器恢复响应。
4. **tcp_slow_start_after_idle**:Linux默认开启这个参数来重置拥塞窗口,但对内网系统间调用影响不大,可能需要根据具体网络状况调整。
5. **初始CWND大小**:Linux初始CWND设置可能限制了大请求的传输效率,建议根据系统需求调整到更合适的值,如Linux 2.6.以上版本的K左右。
通过了解和调整这些参数,可以优化TCP连接性能,提高系统稳定性和响应速度。不过,每个场景的优化策略可能不同,务必结合实际环境进行调整。在学习过程中,可以加入交流群获取更多资源和支持。
Linux TCP内核参数设置与调优(详细)!
/Proc/sys/net/ipv4/目录中存放着TCP参数的文件,用于添加网络设置。其中的许多设置能防止系统遭受攻击,或配置系统路由功能。
例如,vb源码转cTCP_SYN_RETRIES参数控制客户端发起SYN连接的重传次数。修改此参数值,如将net.ipv4.tcp_syn_retries设置为2,测试后,通过SSH连接不存在的主机,可观察到系统重传了2个数据包。
TCP_WINDOW_SCALING参数决定是否启用窗口扩大因子选项。启用此选项可提高网络数据传输效率。
Net.ipv4.tcp_sack参数控制是否启用选择确认(Selective Acknowledgement,SACK)选项,这可以提高数据传输的灵活性和效率。
修改内核参数的目的是优化系统性能和安全性。了解参数的详细配置信息,请参考Linux内核文档。
/Proc/sys/net/core/目录下包含设置,用于控制Linux内核与网络层的交互,决定网络动作时内核的响应方式。
网络相关参数如eth0的MAC地址、速率(speed)、MTU等信息,可以在/sys/class/net/对应网卡目录中查看,此路径提供深入的网络参数细节。
Linux内核源码分析:Linux内核版本号和源码目录结构
深入探索Linux内核世界:版本号与源码结构剖析
Linux内核以其卓越的稳定性和灵活性著称,版本号的精心设计彰显其功能定位。Linux采用xxx.yyy.zzz的格式,其中yy代表驱动和bug修复,zz则是修订次数的递增。主版本号(xx)与次版本号(yy)共同描绘了核心功能的大致轮廓,而修订版(zz)则确保了系统的稳定性与可靠性。
Linux源码的结构犹如一座精密的城堡,由多个功能强大的模块构成。首先,arch目录下包含针对不同体系结构的代码,比如RISC-V和x的虚拟地址翻译,是内核与硬件之间的重要桥梁。接着,block与drivers的区别在于,前者封装了通用的块设备操作,如读写,而后者则根据特定硬件设备分布在各自的抢软件源码c子目录中,如GPIO设备在drivers/gpio。
为了保证组件来源的可信度和系统安全,certs目录存放认证和签名相关的代码,预先装载了必要的证书。从Linux 2.2版本开始,内核引入动态加载模块机制,fs和net目录下的代码分别支持虚拟文件系统和网络协议,这大大提升了灵活性,但同时也对组件验证提出了更高要求,以防止恶意代码的入侵。
内核的安全性得到了进一步加强,crypto目录包含了各种加密算法,如AES和DES,它们为硬件驱动提供了性能优化。同时,内核还采用了压缩算法,如LZO和LZ4,以减小映像大小,提升启动速度和内存利用效率。
文档是理解内核运作的关键,《strong>Documentation目录详尽地记录了模块的功能和规范。此外,include存储内核头文件,init负责初始化过程,IPC负责进程间通信,kernel核心代码涵盖了进程和中断管理,lib提供了通用库函数,而mm则专注于内存管理。网络功能则在net目录下,支持IPv4和TCP/IPv6等协议。
内核的实用工具和示例代码在scripts和samples目录下,而security则关注安全机制,sound负责音频驱动,tools则存放开发和调试工具,如perf和kconfig。用户内核源码在usr目录,虚拟化支持在virt,而LICENSE目录保证了源码的开放和透明。
最后,Makefile是5173源码怎么制作编译内核的关键,README文件则包含了版本信息、硬件支持、安装配置指南,以及已知问题、限制和BUG修复等重要细节。这份详尽的指南是新用户快速入门Linux内核的绝佳起点。
通过深入研究这些目录,开发者和爱好者可以更全面地理解Linux内核的运作机制,从而更好地开发、维护和优化这个强大的操作系统。[原文链接已移除,以保护版权]
Linux内核源码解析---EPOLL实现4之唤醒等待进程与惊群问题
在Linux内核源码的EPOLL实现中,第四部分着重探讨了数据到来时如何唤醒等待进程以及惊群问题。当网卡接收到数据,DMA技术将数据复制到内存RingBuffer,通过硬中断通知CPU,然后由ksoftirqd线程处理,最终数据会进入socket接收队列。虽然ksoftirqd的创建过程不在本节讨论,但核心是理解数据如何从协议层传递到socket buffer。
在tcp_ipv4.c中,当接收到socket buffer时,会首先在连接表和监听表中寻找对应的socket。一旦找到,进入tcp_rcv_established函数,这里会检查socket是否准备好接收数据,通过调用sock_data_ready,其初始值为sock_def_readable,进而进入wake_up函数,唤醒之前挂上的wait_queue_t节点。
在wake_up方法中,会遍历链表并回调ep_poll_callback,这个函数是epoll的核心逻辑。然而,如果epoll的设置没有启用WQ_FLAG_EXCLUSIVE,就会导致惊群效应,即唤醒所有阻塞在当前epoll的进程。这在default_wake_function函数中体现,如果没有特殊标记,进程会立即被唤醒并进入调度。linux源码源代码
总结来说,epoll的唤醒过程涉及socket buffer、协议层处理、链表操作以及回调函数,其中惊群问题与默认的唤醒策略密切相关。理解这些细节,有助于深入理解Linux内核中EPOLL的异步操作机制。
Linux上TCP的几个内核参数调优
Linux作为强大操作系统提供了丰富的内核参数进行调优,TCP内核参数调优尤其重要。本文聚焦于内网环境下的TCP参数调优,分享一些实践经验。
调优清单包括:tcp_max_syn_backlog、somaxconn、tcp_abort_on_overflow。这三个参数关联内核TCP连接缓冲队列,设定过小可能导致连接被无端丢弃,引起诡异现象,建议增大Backlog队列大小以避免问题。
设置tcp_abort_on_overflow可避免连接被意外丢弃。同时,确保Java应用正确配置Backlog参数,避免默认值过小导致连接问题。
考虑tcp_tw_recycle参数可能带来的负面影响,如NAT环境下连接成功率降低。高版本内核已优化此参数,如遇TIME_WAIT问题,调整相关参数可缓解。
优化tcp_syn_retries参数,设置合适的重传次数以改善连接建立时的超时时间。Java应用通常可通过API设置超时时间,降低依赖于内核参数的重要性。
调整tcp_retries2参数,用于计算传输过程中的重传次数,对特定场景如长ReadTimeout设置有显著影响。优化此参数可减少宕机时的响应延迟,但资源隔离策略也是关键。
在物理机宕机与进程宕机情形下,内核行为存在差异。物理机宕机会导致内核发送reset,减轻线程阻塞问题。
考虑tcp_slow_start_after_idle参数,Linux默认开启。关闭此参数可提高某些请求的传输速度,适用于网络条件变化频繁的场景。在内网系统间调用中,通常无需启用此功能。
初始CWND大小对请求速率有显著影响。Linux 2.6.及以前版本初始CWND为(2-4)个mss,现代版本调整为RFC 推荐的段,即K左右,更适合内网环境。
总之,Linux内核提供丰富参数供调优,选择最适合当前环境的组合至关重要。潜心研究,找到最佳实践,可显著提升系统性能。
详细讲解Linux内核角度分析tcpdump原理(1)
tcpdump是Linux系统抓包工具,基于libpcap库,能根据定义对网络数据包进行截获。它支持过滤网络层、协议、主机、网络或端口,并使用逻辑语句去除无用信息。tcpdump能分析网络行为,如丢包重传、报文详细信息和TCP分组。通过保存捕获的数据包为pcap文件,使用wireshark打开,能更直观地分析问题。
tcpdump使用libpcap进行包捕获,使用bpf机制进行完美过滤。libpcap是Unix/Linux平台下的数据包捕获函数库,独立于系统用户层,提供链路层旁路处理。libpcap安装步骤包括库安装、测试、编译和错误处理。
在libpcap中,创建套接字使用AF_PACKET和SOCK_RAW,常用于抓包分析。socket函数调用__sock_create和packet_family_ops来创建socket,其中AF_PACKET模块对应创建函数packet_rcv,该函数用于接收链路层的包,然后根据应用层设置的过滤条件使用BPF进行过滤。
当网络包接收时,tcpdump创建PF_PACKET套接字,通过注册prot_hook完成准备工作。网络接收数据包时,会调用netif_receive_skb和__netif_receive_skb_core,其中后者会遍历ptype_all并执行deliver_skb函数,该函数调用packet_rcv进行过滤并添加到接收缓存。
当网络包发送时,Linux协议栈提供的报文发送函数会调用dev_queue_xmit或dev_hard_start_xmit,遍历ptype_all并执行deliver_skb和packet_rcv,将数据包发送给driver。最终,接收队列中的数据会copy给应用层,完成数据包的抓取。
文章总结了tcpdump从创建套接字到收发包的流程,以及使用libpcap和BPF进行过滤的过程。下篇文章将详细分析BPF过滤的实现。
LinuxC编程建立TCP连接linuxctcp
Linux C编程:建立 TCP连接
Linux C编程中使用TCP(Transmission Control Protocol,传输控制协议)协议建立客户端和服务器之间连接的过程称之为TCP连接,是一种可靠而强大的通信协议,在Linux C编程中可用于建立数据库、网络通信等等。本文介绍了在Linux C编程中如何建立TCP连接,以及其中遇到的一些问题。
在Linux C语言编程中,可以使用socket()函数建立一个TCP连接。socket()函数的第一个参数指定协议族,例如AF_INET指定IPV4协议族,第二个参数指定套接字类型,例如SOCK_STREAM指定流式套接字。
接下来,可以使用bind()函数将套接字与系统分配的IP地址和端口绑定,然后使用listen()函数使套接字变为被动模式,并启动监听进程,此时服务器已准备就绪,等待客户端的连接。最后,使用accept()函数接受客户端的连接,当接受到客户端的连接后,服务器就可以使用建立的socket与客户端通信了。
示例代码如下:
// 创建 socket
int sockfd;
struct sockaddr_in addr;
// AF_INET: IPV4 协议族
// SOCK_STREAM: 流式套接字
sockfd = socket(AF_INET, SOCK_STREAM, 0);
// 设置 IP 地址
addr.sin_family = AF_INET;
addr.sin_port = htons(); //端口号
addr.sin_addr.s_addr = inet_addr(“.0.0.1”); //IP地址
// 绑定 IP 和 端口
bind(sockfd, (struct sockaddr*)&addr, sizeof(addr));
// 监听客户端请求
listen(sockfd, );
// 接受 客户端连接请求
struct sockaddr_in client_addr;
socklen_t client_addr_len;
int client_fd = accept(sockfd, (struct sockaddr*)&client_addr,
&client_addr_len);
上述步骤完成后,客户端和服务器的TCP连接建立完毕。在Linux C编程中,使用TCP协议建立客户端和服务器之间连接过程虽然繁琐,但是它可以实现可靠的数据传输和优秀的网络通信,这个代价值得支付。
总而言之,在Linux C编程中使用TCP协议建立客户端和服务器之间连接,可以通过socket()、bind()、listen()、accept()等函数将客户端和服务器建立可靠的数据传输连接,这是一个蛮耗时的过程,但也值得支付,因为通过这种方式可以实现稳定的网络通信。
一文从linux源码看socket的close基本概括
理解TCP关闭过程的关键在于四次挥手,这个过程是主动关闭、被动关闭和同时关闭的统一体现。在主动关闭close(fd)的过程中,通过C语言中的close(int fd)函数调用系统调用sys_close,进而执行filp_close方法。随后,fput函数处理多进程中的socket引用问题,确保父进程也正确关闭socket。在f_op->release的实现中,我们关注socket与file的关系以及close(fd)调用链。随着状态机的变迁,TCP从FIN_WAIT1变迁至FIN_WAIT2,设置一个TCP_FIN_WAIT2定时器,防止由于对端未回应导致的长时间等待。FIN_WAIT2状态等待对端的FIN,完成最后两次挥手。接收对端FIN后,状态变化至time_wait,原socket资源被回收,并在时间等待超时后从系统中清除。在被动关闭中,接收FIN进入close_wait状态,应用关闭连接时改变状态为last_ack,并发送本端的FIN。被动关闭的后两次挥手后,连接关闭。出现大量close_wait通常与应用检测到对端FIN时未及时关闭有关,解决方法包括调整连接池的参数或加入心跳检测。操作系统通过包活定时器在超时后强制关闭连接。进程退出时会关闭所有文件描述符,再次触发filp_close函数。在Java中,通过重写finalize方法,GC会在释放内存时关闭未被引用的socket,但不可完全依赖GC来管理socket资源,以避免潜在的内存泄露问题。总结,深入理解TCP关闭过程有助于优化网络应用程序的性能和稳定性,同时阅读Linux内核源代码需要耐心和系统性的方法。
从Linux源码看TIME_WAIT状态的持续时间
对于Linux系统中TIME_WAIT状态的Socket,长久以来,人们普遍认为其持续时间大约是秒。然而,在实际线上环境中,Socket的TIME_WAIT状态有时会超过秒。这个问题源于一个复杂Bug的分析,促使我深入Linux源码进行探究。
首先,了解下我们的Linux环境配置,特别是tcp_tw_recycle参数,这对TIME_WAIT状态的处理至关重要。我们设定了tcp_tw_recycle为0,以避免NAT环境下的特定问题。
接下来,让我们通过TCP状态转移图来理解TIME_WAIT状态。理论上,它会保持2MSL(Maximum Segment Lifetime,即最长报文段寿命)的时间。但具体时长并未在图中明确指出。在源码中,我发现了一个关键的宏定义TCP_TIMEWAIT_LEN,它定义了秒的销毁时间。
尽管之前我坚信秒的TIME_WAIT状态会被系统回收,但实际遇到的秒案例促使我重新审视内核对TIME_WAIT状态的处理。这个疑问将通过后续的博客分享答案。
深入源码,我们找到了TIME_WAIT定时器,它负责销毁过期的Socket。当Socket进入TIME_WAIT状态时,会触发特定的函数处理,如在不启用tcp_tw_recycle时,处理函数会直接调用inet_twsk_schedule。
内核通过时间轮机制管理TIME_WAIT状态,每个slot处理大约7.5秒的Socket。如果所有slot都被TIME_WAIT状态占用,可能会导致处理滞后。如果一个slot中的TIME_WAIT数量超过个,剩余的任务将交给work_queue处理,这会导致处理时间延长。
通过模拟,我们发现即使在slot处理完成后,整个周期可能已经过去了.5秒,这在NAT环境下可能导致问题。PAWS(Protection Against Wrapped Sequences)的保护机制可能会延长TIME_WAIT状态,使得Socket在特定情况下可以复用。
总的来说,对TIME_WAIT状态的深入理解需要避免刻板印象,因为实际情况可能因为复杂的机制而超出预想。在解决问题时,必须质疑既有的观点,这虽然艰难,但也是学习和成长的过程。