1.springboot接口监控(springboot监控器)
2.基于Prometheus + Grafana搭建IT监控报警最佳实践(2)
3.利用苹果iOS群控系统源码进行项目开发
4.Flink mysql-cdc connector 源码解析
5.FLINK 部署(阿里云)、数据数据监控 和 源码案例
springboot接口监控(springboot监控器)
Springboot2.0Actuator的健康检查
在当下流行的ServiceMesh架构中,由于Springboot框架的平台平台种种优点,它特别适合作为其中的源码源码应用开发框架。
说到ServiceMesh的数据数据微服务架构,主要特点是监控监控小鱼源码下载将服务开发和服务治理分离开来,然后再结合容器化的平台平台Paas平台,将它们融合起来,源码源码这依赖的数据数据都是互相之间默契的配合。也就是监控监控说各自都暴露出标准的接口,可以通过这些接口互相交织在一起。平台平台
ServiceMesh的源码源码架构设计中的要点之一,就是数据数据全方位的监控,因此一般我们选用的监控监控服务开发框架都需要有方便又强大的监控功能支持。在Springboot应用中开启监控特别方便,平台平台监控面也很广,还支持灵活定制。
在Springboot应用中,要实现可监控的功能,依赖的是spring-boot-starter-actuator这个组件。它提供了很多监控和管理你的springboot应用的HTTP或者JMX端点,并且你可以有选择地开启和关闭部分功能。当你的springboot应用中引入下面的依赖之后,将自动的拥有审计、健康检查、Metrics监控功能。
具体的使用方法:
“*”号代表启用所有的监控端点,可以单独启用,例如,health,info,metrics等。
一般的监控管理端点的配置信息,如下:
上述配置信息仅供参考,具体须参照官方文档,由于springboot的版本更新比较快,配置方式可能有变化。stl deque 源码
今天重点说一下Actuator监控管理中的健康检查功能,随时能掌握线上应用的健康状况是非常重要的,尤其是现在流行的容器云平台下的应用,它们的自动恢复和扩容都依赖健康检查功能。
当我们开启health的健康端点时,我们能够查到应用健康信息是一个汇总的信息,访问时,我们获取到的信息是{ "status":"UP"},status的值还有可能是DOWN。
要想查看详细的应用健康信息需要配置management.endpoint.health.show-details的值为always,配置之后我们再次访问,获取的信息如下:
从上面的应用的详细健康信息发现,健康信息包含磁盘空间、redis、DB,启用监控的这个springboot应用确实是连接了redis和oracleDB,actuator就自动给监控起来了,确实是很方便、很有用。
经过测试发现,details中所有的监控项中的任何一个健康状态是DOWN,整体应用的健康状态也是DOWN。
Springboot的健康信息都是从ApplicationContext中的各种HealthIndicator
Beans中收集到的,Springboot框架中包含了大量的HealthIndicators的实现类,当然你也可以实现自己认为的健康状态。
默认情况下,最终的springboot应用的状态是由HealthAggregator汇总而成的,汇总的算法是:
Springboot框架自带的HealthIndicators目前包括:
有时候需要提供自定义的健康状态检查信息,你可以通过实现HealthIndicator的接口来实现,并将该实现类注册为springbean。你需要实现其中的health()方法,并返回自定义的健康状态响应信息,该响应信息应该包括一个状态码和要展示详细信息。例如,下面就是一个接口HealthIndicator的实现类:
另外,除了Springboot定义的arch 源码构建几个状态类型,我们也可以自定义状态类型,用来表示一个新的系统状态。在这种情况下,你还需要实现接口HealthAggregator,或者通过配置management.health.status.order来继续使用HealthAggregator的默认实现。
例如,在你自定义的健康检查HealthIndicator的实现类中,使用了自定义的状态类型FATAL,为了配置该状态类型的严重程度,你需要在application的配置文件中添加如下配置:
在做健康检查时,响应中的HTTP状态码反应了整体的健康状态,(例如,UP对应,而OUT_OF_SERVICE和DOWN对应)。同样,你也需要为自定义的状态类型设置对应的HTTP状态码,例如,下面的配置可以将FATAL映射为(服务不可用):
下面是内置健康状态类型对应的HTTP状态码列表:
本文主要介绍了Springboot中提供的应用健康检查功能的使用方法和原理,顺带介绍了一点Actuator的内容。主要的内容来自springboot2.0.1的官方文档和源码,还有一些自己的想法,希望多多支持。
SpringBoot+Druid整合Druid监控页面的数据源功能没有信息
这个是正常情况,spingboot启动的时候没有连接数据,所以这里就是这样。红色div块一直存在,代码里写死的。没办法。还有druid现在有spring-boot-starter了,不用这样配置了
SpringBoot2对接prometheus该监控特点:
prometheus
Kibana
范围监控数据接口:,结果如下:
怎么给springboot接入cat监控首先我们需要找到Tomcat目录下面的Conf文件夹。找到server.xml文件,将其打开。找到这句话只需要将这个修改为即可修改成功后,重新启动服务器。看看,只需要输入localhost即可访问Tomcat主页了。
基于Prometheus + Grafana搭建IT监控报警最佳实践(2)
见字如面,caffe 源码 书大家好,我是小斐。延续前文,本文将深入探讨Prometheus和Grafana的监控体系。
首先,我们需要打开Prometheus和Grafana进行操作,访问地址分别为:...:/ 和 ...:/。
以node_exporter数据采集器为例,先确保其已安装于需要监控的主机。若要获取...主机的状态数据,需在该主机安装node_exporter采集器。
在prometheus.yml中添加需要抓取的目标源信息,具体操作为:在scrape_configs下添加job_name,指定静态目标,添加...:目标。
配置文件配置完成后,由于是静态的,需要重新加载配置文件,重启Prometheus以生效。
在targets中查看是否已抓取到目标,根据上图可见,...的主机节点数据已抓取到。在Prometheus中验证数据正确性,点击http://...:/metrics 可查看抓取的所有数据。
查看数据信息,输入node_memory_MemTotal_bytes查询该主机内存数据是否正确,可以看到G总内存,与我本机内存相符,说明数据正确。
至此,我们可以确定数据抓取是成功的。
数据生成大屏数据UI,展示放在Grafana中,打开Grafana:http://...:/,点击数据源:关联Prometheus数据源。
输入Prometheus的pc源码系统地址:http://...:,下载Grafana的面板,json模版可在Grafana官网模版库中找到。在此,我选择了一个模版,具体链接为:Linux主机详情 | Grafana Labs。
添加模版:点击import,导入下载下来的json文件。
或者根据ID来加载。如果对面板数据和展示的风格不适用,可单独编辑变量和数据查询语句,关于Grafana的变量和数据查询语句后续单独开篇说明,在此只采用通用的模版展示数据。
关于SNMP数据采集,我们可以通过SNMP协议来监控交换机、路由器等网络硬件设备。在一台Linux主机上,我们可以使用snmpwalk命令来访问设备通过SNMP协议暴露的数据。
简单查看后,我们需要长期监控,这个时候就要借助SNMP Exporter这个工具了。SNMP Exporter是Prometheus开源的一个支持SNMP协议的采集器。
下载docker image使用如下命令,使用中请切换对应的版本。如果使用二进制文件部署,下载地址如下。
对于SNMP Exporter的使用来说,配置文件比较重要,配置文件中根据硬件的MIB文件生成了OID的映射关系。以Cisco交换机为例,在官方GitHub上下载最新的snmp.yml文件。
关于采集的监控项是在walk字段下,如果要新增监控项,写在walk项下。我新增了交换机的CPU和内存信息。
在Linux系统中使用Docker来运行SNMP Exporter可以使用如下脚本。
在Linux系统部署二进制文件,使用系统的Systemd来控制服务启停,系统服务文件可以这么写。该脚本源自官方提供的脚本,相比于官方脚本增加了SNMP Exporter运行端口的指定。
运行好以后,我们可以访问http://localhost:来查看启动的SNMP Exporter,页面上会显示Target、Module、Submit、Config这几个选项和按钮。
在Target中填写交换机的地址,Module里选择对应的模块,然后点击Submit,这样可以查到对应的监控指标,来验证采集是否成功。
target可以填写需要采集的交换机IP,模块就是snmp.yml文件中命名的模块。
点击Config会显示当前snmp.yml的配置内容。
如果上面验证没有问题,那么我们就可以配置Prometheus进行采集了。
配置好Prometheus以后启动Prometheus服务,就可以查到Cisco交换机的监控信息了。
接下来就Prometheus配置告警规则,Grafana进行画图了。这些操作和其他组件并无区别,就不再赘述。
关于手动生成snmp.yml配置文件,当官方配置里没有支持某些设备时,我们需要通过MIB文件来自己生成配置文件。
以华为交换机为例,在单独的CentOS7.9的一台虚拟机中部署snmp_exporter,在这里我以源码编译部署。
在此我贴出generator.yml文件的模版:模块中,if_mib是指思科模块提供公共模块,HZHUAWEI是我自定义的模块名,根据walk下的OID和变量下的mib库文件路径生成snmp.yml配置文件,然后根据snmp.yml配置文件采集交换机信息。
generator.yml文件格式说明:参考官网。
这次我贴一份比较完整的snmpv3版本的模版:参考网络上,后续我内部的完整模版贴出来,形成最佳实践。
主要的消耗时间就是想清楚需要采集的交换机监控指标信息,并到官网找到OID,贴到generator.yml文件中,最后执行./generator generate命令遍历OID形成snmp.yml配置文件,启动snmp_exporter时指定新形成的snmp.yml文件路径。
启动后在浏览器中,打开http://...5:/。
在此需要说明下,交换机需要开启snmp使能。如内部交换机比较多,可采用python或者ansible批量部署snmp使能,python这块可学习下@弈心 @朱嘉盛老哥的教程,上手快并通俗易懂,ansible后续我会单独出一套针对华为设备的教程,可关注下。
一般情况下,交换机都是有多台,甚至几百上千台,在如此多的设备需要监控采集数据,需要指定不同模块和不同配置文件进行加载采集的,下面简单介绍下多机器部署采集。
编辑prometheus.yml文件,snmp_device.yml的内容参照如下格式即可。我在下面的示例中添加了architecture与model等变量,这些变量Prometheus获取目标信息时,会作为目标的标签与目标绑定。
重启服务器或重加载配置文件即可,后续贴出我的实际配置文件。
此篇到此结束,下篇重点说明配置文件细节和我目前实践的配置文件讲解。
利用苹果iOS群控系统源码进行项目开发
在移动互联网时代,集中管理和控制大量iOS设备成为了企业和开发者的重要需求。苹果iOS群控系统应运而生,提供中心化管理系统,实现设备同步操作和数据管理。本文将引导开发者获取并使用iOS群控系统的源码进行项目开发。
理解iOS群控系统源码是开发的关键。系统架构包含服务器端和客户端两大部分,服务器端负责任务调度、指令分发,客户端在iOS设备上运行,执行服务器指令。深入学习源码逻辑,是进行二次开发的基础。
获取源码需遵循苹果规定,确保合规性。使用Git进行版本管理,Xcode解析阅读源码。理解模块功能,包括设备连接管理、指令编码解码、任务队列处理等。
依据项目需求,对源码进行裁剪、扩展或优化。增加批量安装应用、自动化测试、大数据采集等功能模块。确保修改后的代码满足苹果的安全性和隐私政策。
完成源码改造后,进行编译构建,生成可部署的服务器程序及iOS客户端应用。使用模拟器或真实设备进行多轮测试,确保群控系统稳定运行。
部署时,配置服务器环境,承载预期数量的设备接入。建立监控体系,实时跟踪状态,快速响应问题并修复。
综上,通过利用iOS群控系统源码进行项目开发,开发者需深入理解其机制,结合实际业务需求,灵活运用和创新。整个过程既需专业技能,又需细心规划与执行。
Flink mysql-cdc connector 源码解析
Flink 1. 引入了 CDC功能,用于实时同步数据库变更。Flink CDC Connectors 提供了一组源连接器,支持从MySQL和PostgreSQL直接获取增量数据,如Debezium引擎通过日志抽取实现。以下是Flink CDC源码解析的关键部分:
首先,MySQLTableSourceFactory是实现的核心,它通过DynamicTableSourceFactory接口构建MySQLTableSource对象,获取数据库和表的信息。MySQLTableSource的getScanRuntimeProvider方法负责创建用于读取数据的运行实例,包括DeserializationSchema转换源记录为Flink的RowData类型,并处理update操作时的前后数据。
DebeziumSourceFunction是底层实现,继承了RichSourceFunction和checkpoint接口,确保了Exactly Once语义。open方法初始化单线程线程池以进行单线程读取,run方法中配置DebeziumEngine并监控任务状态。值得注意的是,目前只关注insert, update, delete操作,表结构变更暂不被捕捉。
为了深入了解Flink SQL如何处理列转行、与HiveCatalog的结合、JSON数据解析、DDL属性动态修改以及WindowAssigner源码,可以查阅文章。你的支持是我写作的动力,如果文章对你有帮助,请给予点赞和关注。
本文由文章同步助手协助完成。
FLINK 部署(阿里云)、监控 和 源码案例
FLINK部署、监控与源码实例详解
在实际部署FLINK至阿里云时,POM.xml配置是一个关键步骤。为了减小生产环境的包体积并提高效率,我们通常选择将某些依赖项设置为provided,确保在生产环境中这些jar包已预先存在。而在本地开发环境中,这些依赖需要被包含以支持测试。 核心代码示例中,数据流API的运用尤其引人注目。通过Flink,我们实现了从Kafka到Hologres的高效数据流转。具体步骤如下:Kafka配置:首先,确保Kafka作为数据源的配置正确无误,包括连接参数、主题等,这是整个流程的开端。
Flink处理:Flink的数据流API在此处发挥威力,它可以实时处理Kafka中的数据,执行各种复杂的数据处理操作。
目标存储:数据处理完成后,Flink将结果无缝地发送到Hologres,作为最终的数据存储和分析目的地。
77位諾獎得主聯名 反對特朗普提名的衞生部長
fmscms 源码
发货网站源码_发货网站源码是什么
疯狂猜图 源码_疯狂猜图素材
國際認證:「歐名哲防癌運動」可預防癌症 為2024癌症防治新契機
超前MACD源码_超前macd指标公式