1.UE4源码剖析:MallocBinned(上)
2.UE4-Slate源码学习(六)slate渲染Part2-Paint控件绘制
3.UE4-Slate源码学习(四)FSceneViewport
4.UE4源码剖析——光照贴图(LightMap) 之 由烘焙到渲染流程
5.UE4源码剖析——异步与并行 中篇 之 Thread
6.图解UE4源码AI行为树系统 其二 一棵行为树是怎么被运行起来的
UE4源码剖析:MallocBinned(上)
近期着手UE4项目开发,对UnrealEngine已久仰慕,终于得此机会深入探索。鉴于项目内存性能问题,决定从内存分配器着手,深入研读UE4源码。php辅助源码虽个人水平有限,尚不能全面理解,但愿借此机会揭开源码神秘面纱,让新手朋友们不再感到陌生。
UE4内存分配器位于硬件抽象层HAL(Hardware Abstraction Layer)中。具体装箱内存分配器代码位于VS项目目录:UE4/Source/Runtime/Core/Private/HAL/MallocBinned。
分析从ApplePlatformMemory::BaseAllocator开始,可发现Mac平台的默认分配器为MallocBinned,iOS的默认分配器为MallocAnsi。以下将重点分析MallocBinned。
一、确定对齐方式
FScopeLock用于局部线程锁,确保线程同步。关于Alignment的确定,通常使用默认值。默认值取决于内存对齐方式,此处默认对齐为8字节。
二、确定有足够空间来内存对齐
代码中,SpareBytesCount用于确认空间足够。若分配内存小于8字节,则按Alignment大小匹配箱体;若大于8字节,则按Size + Alignment - sizeof(FFreeMem)匹配箱体。
三、确定箱体大小
根据Size的大小,有三种不同的处理方式。k以下的内存分配采用装箱分配,PoolTable中包含个不同大小的池子。
四、初始化内存池
分析内存池初始化过程,主要工作包括:确定内存大小,分配内存块,设置内存池基本信息。
五、内存装箱
AllocateBlockFromPool从内存池中分配一个Block,实现内存装箱过程。
UE4-Slate源码学习(六)slate渲染Part2-Paint控件绘制
上一篇文章介绍了绘制一个SWindow的初期步骤,即计算整个UI树的控件大小,为绘制做准备。文章随后深入探讨了绘制流程的第二步,即执行FSlateApplication::PrivateDrawWindows()后,开始调用SWidget::Paint()函数,每个控件随后实现其虚函数OnPaint()。
在这一过程中,绘制参数被封装在FPaintArgs中,作为Paint和OnPaint过程中的关键引用参数。FSlateRHIRenderer与FSlateDrawBuffer是继承自FSlateRenderer的类,作为FSlateApplicationBase的全局变量,在构造时创建。收银系统源码时代在绘制过程中,通过GetDrawBuffer()函数可获取到FSlateDrawBuffer对象。
FSlateDrawBuffer实现了Slate的绘制缓冲区,内部封装了FSlateWindowElementList数组,用于存储多个SWindow下的绘制元素列表。每个SWindow通过AddWindowElementList()返回一个元素列表。
FSlateWindowElementList负载了SWindow内的所有图元信息,内部封装了FSlateDrawElement的数组,包含Cached和Uncached元素,以及SWindow的指针和用于渲染的批处理数据FSlateBatchData。
FSlateDrawElement是构建Slate渲染界面的基本块,封装了UI树节点控件需要渲染的相关信息,如渲染变换、位置、大小、层级ID、绘制效果等,以及后续渲染阶段需要的相关数据。
在Paint流程中,处理当前传入的SWindow和ChildWindows,首先判断窗口是否可见和是否最小化,然后从参数封装的OutDrawBuffer中获取WindowElementList。调用SWindow的PaintWindow()函数开始绘制窗口,并最终返回所有子控件计算完的最大层级。接着,子窗口递归绘制。
PaintWindow()函数在绘制窗口时,首先调用SetHittestArea()设置点击区域,HittestGrid会判断窗口大小是否改变,若不变则仅更新窗口在屏幕中的位置。构造FPaintArgs参数后,将其封装到FSlateInvalidationContext中。
FSlateInvalidationRoot类的PaintInvalidationRoot()函数可以作为控件树的根节点或叶子节点(SInvalidationPanel),构建快速路径避免每次绘制都计算大小和Paint函数,有利于优化。本篇文章主要分析正常慢速路径调用流程,优化相关将另文分析。
PaintSlowPath()函数从SWindow开始调用Paint()函数,并定义LayerId从0开始作为参数,进行实际的绘制相关计算。
Paint()函数首先处理裁剪、透明度混合、坐标转换等代码。若SWidget包含NeedsTick掩码,则调用Tick函数,我们在日常开发中通过蓝图或lua使用Tick函数时即调用到这里,通过SObjectWidget::Tick调用到UUserWidget::NativeTick供实现Tick。构造FSlateWidgetPersistentState PersistentState作为SWidget的变量,表示Paint时的状态。
PersistentState.CachedElementHandle将当前SWidget存储到FSlateWindowElementList中的WidgetDrawStack数组中。
更新FPaintArgs中的父节点参数和继承可点击测试参数,判断点击测试状态,然后将当前SWidget添加到点击测试中。调用虚函数OnPaint,星球重启狂源码由控件自己实现。
OnPaint()函数参数包括绘制参数引用、几何体、裁剪矩形、缓冲元素列表、层级、控件风格、父节点状态等。最后处理重绘标签、延迟绘制相关内容、UpdateWidgetProxy()根据缓存句柄更新快速路径中需要处理标记设置为Volatile不稳定状态的SWidget。
虚函数OnPaint()由子类自己实现,本文列举了SImage、SButton、SCompoundWidget和SConstraintCanvas的OnPaint()示例代码学习。
在SImage中,简单判断Brush是否存在以及BrushDrawType的类型,然后调用FSlateDrawElement::MakeBox将控件添加到缓冲区元素列表中。
SButton继承自SCompoundWidget,GetBorder()根据当前按钮状态返回ui中设置的Enabled、Press、Hover、Disabled等状态的Brush。
SCompoundWidget作为合成节点,有且只能有一个子节点,且在Paint时强制将子节点的LayerId+1,同时SCompoundWidget可以单独设置混合颜色和透明度,影响子节点。
SConstraintCanvas作为SWidget的基类对应UMG中常用的UCanvasPanel,通过ArrangeLayeredChildren()对孩子进行层级排序,并根据孩子的层级是否相同存储bool值在ChildLayers中。遍历所有孩子,判断是否开启新层级,递归调用Paint函数,最后返回最大层级。
SConstraintCanvas::ArrangeLayeredChildren函数中,获取设置bExplicitChildZOrder,表示可以将同层一次渲染,有利于提高渲染器批处理。对所有孩子排序,排序规则为FSortSlotsByZOrder。遍历所有孩子,判断可见性掩码、计算偏移、锚点、位置、拉伸缩放等,封装成FArrangedWidget存储到ArrangedChildren中,用于OnPaint时有序遍历。判断每个孩子ZOrder是否相同,相同则bNewLayer为false,大于LastZOrder则将bNewLayer设置为true,最终存储到ArrangedChildLayers中,用于OnPaint函数判断是宁夏滩羊溯源码否将layerId+1。
FSlateDrawElement::MakeBox()函数在OnPaint之后调用,将绘制控件的相关信息通过创建FSlateDrawElement绘制元素对象,添加到SWindow管理的FSlateWindowElementList元素列表中。创建Payload用于存储贴图等相关信息,根据控件Paint过程中的参数调用Element.Init初始化绘制元素,得到为该控件绘制创建的FSlateDrawElement对象。
总结整个Slate绘制流程的第二步,我们没有分析快速处理和优化细节,而是按照正常绘制流程分析代码。通过从PaintWindow开始遍历整个控件树,处理每个空间节点的Paint、OnPaint函数,最终目的是给每个控件创建一个FSlateDrawElement对象,存储渲染线程绘制所需的相关信息,并添加到FSlateWindowElementList中。理解了整个调用流程,整个过程较为清晰,本文基于UE4版本4..2。
UE4-Slate源码学习(四)FSceneViewport
即视口是引擎中显示游戏画面的SWidget控件,也是编辑器中显示游戏内容的窗口。场景绘制视口(FSceneViewport)与SViewport绑定,用于场景渲染。鼠标捕获模式(EMouseCaptureMode)与鼠标锁定模式(EMouseLockMode)在项目设置中可配置,影响鼠标的交互。FSceneViewport事件处理包括鼠标按下(OnMouseButtonDown)、触摸开始(OnTouchStarted),事件响应后构造FReply,并更新几何体缓存、鼠标位置缓存。鼠标位置由绝对坐标转换为相对于视口的相对坐标。根据捕获状态和输入处理逻辑,事件最终被传递至PlayerController,通过PlayerInput管理。对于触摸输入,处理流程类似,调用InputTouch接口。
移动事件(OnMouseMove)、触摸移动(OnTouchMoved)记录鼠标的Delta和NumMouseSample累计值,Tick时处理。ProcessAccumulatedPointerInput在Tick阶段调用,处理键盘、鼠标输入,相关流程见第二章。完成输入处理后,FEngineLoop调用FinishedInputThisFrame,最终在ProcessAccumulatedPointerInput中调用InputAxis,处理至PlayerController的InputAxis,存储在PlayerInput中。其他事件如鼠标释放(OnMouseButtonUp)、触摸结束(OnTouchEnded)同样遵循类似流程。
若SWidget为视口,执行相关事件调用至ViewportClient接口,进而触发输入系统(PlayerController、PlayerInput、低代码源码开发InputComponent)。日常游戏开发中,通过视口事件实现如旋转相机、隐藏鼠标等操作。PlayerController提供三种模式(FInputModeUIOnly、FInputModeGameAndUI、FInputModeGameOnly),通过调整SViewport和ViewportClient参数,实现不同模式下的捕获、锁定、显隐鼠标功能。所讨论内容基于UE4版本4..2。
UE4源码剖析——光照贴图(LightMap) 之 由烘焙到渲染流程
在离线编辑器阶段,通过构建(Build)按钮启动光照烘焙流程,UE4引擎在构建场景光照、反射球信息、预计算静态网格可见性、构建导航网格、构建HLOD、构建流式贴图等,仅关注光照相关只构建光照(Build Lighting Only)阶段,Lightmass系统负责计算光照,Swarm分布式工具加速并分担计算任务。
Swarm初始化并启动烘焙流程,Startup阶段计算光照构建的关卡与灯光信息,统计静态几何体数据并初始化Swarm,Swarm分为协调与代理程序,负责数据导出与任务分配。AmortizedExport阶段进行分摊式数据导出,SwarmKickoff阶段Swarm全面启动,AsynchronousBuilding阶段消费者程序执行任务,完成光照信息计算。AutoApplyingImport阶段根据配置决定是否自动导入烘焙结果,WaitingForImport与ImportRequested阶段等待导入烘焙数据,Import阶段完成数据导入,Finished阶段地图构建完成。
光照贴图合并大图过程,为每个静态几何体独立生成光照贴图后,UE4将多张贴图尽可能合并到一张大贴图中,以优化IO加载与渲染性能。合并算法简单,通过排序、读取最大尺寸限制与重新摆放光照贴图完成。
贴图像素设置与Mipmap生成,合并后的光照贴图设置像素值,为每种类型的光照贴图创建,最终将数据以真实形式存储。贴图包含SkyOcclusionTexture、AOMaterialMaskTexture、ShadowMapTexture与低分辨率系数贴图。
贴图渲染资源合并中,判断不同几何体使用的贴图集合是否一致,优化判断效率。创建FLightmapClusterResourceInput类代表贴图集合,并统计所有集合用于判断几何体是否使用相同贴图集合。
运行时光照贴图传递到Shader流程包括UE4几何体渲染架构窥探、光照信息存储、赋值LCI与生成渲染批次、绑定Shader。FLODInfo类存储光照信息,FMeshBatchElement中设置LCI字段,FBasePassMeshProcessor绑定贴图集合到Shader。在Shader代码中访问LightmapResourceCluster变量访问贴图集合中的光照贴图。
UE4通过Swarm分布式框架、Lightmass光照系统与优化的贴图合并与传递流程,实现了高效、实时的光照计算与渲染。
以上内容详细介绍了UE4引擎中光照贴图从烘焙到渲染的完整流程,包括分布式工具、数据合并、贴图存储与Shader访问,实现了高性能的光照计算与渲染。
UE4源码剖析——异步与并行 中篇 之 Thread
我们知道UE中的异步框架分为TaskGraph与Thread两种,上篇教程我们学习了TaskGraph,它擅长处理有依赖关系的短任务;本篇教程我们将学习Thread,它与TaskGraph相反,它更擅长于处理长任务。而下一篇文章,我们则会承接Thread,去学习一下引擎中一些重要的线程。
Thread擅长处理长任务,从长任务生命周期这个层面来看,我们可以先把长任务分为两类:常驻型长任务与非常驻型长任务。
常驻型长任务侧重于并行,通常用于监听式服务,例如网络传输,使用单独的线程对网络进行监听,每当有网络数据包到达时,线程接收并处理后,不会立即结束,而是重置部分状态,继续监听,等待下一轮数据包。
非常驻型长任务侧重于异步,通常用于数据处理,例如主线程为了提高性能,避免卡顿,会将一些重负载的运算任务分发给分线程处理,可能分批给多条分线程,主线程继续运行其他逻辑。任务处理完成后,将结果返回给主线程,分线程可销毁。
接下来,我们通过两个例子学习Thread的使用。
计算由N到M(N和M为大数字)所有数字的和。使用Thread异步调用,将计算操作交由分线程执行,计算完成后再通知主线程结果,代码实现如下:
逻辑分为两部分:启动分线程计算数字和,使用Async函数,参数为EAsyncExecution::Thread,创建新线程执行。学习Async函数用法,该函数返回TFuture对象,代表未来状态,当前无法获取结果,但在未来某个时刻状态变为Ready,此时可通过TFuture获取结果。
主线程注册回调,等待分线程计算完成,使用TFuture的Then函数,完成时触发注册的回调,也可使用Wait系列函数等待计算完成。
接下来学习常驻型任务使用。
定义玩家血量上限点,当前点,当血量未满时,每0.2秒恢复1点血量。代码实现分为创建生命治疗仪FRunnable对象、重写Run函数、创建FRunnableThread线程、测试恢复功能和释放线程资源。
生命治疗仪创建与测试完整代码如下,可验证生命恢复功能和暂停与恢复。
UE4中的FRunnable与FRunnableThread提供创建常驻型任务所需接口。无论是常驻型还是非常驻型,底层实现相同,都是使用FRunnableThread线程。
FRunnableThread线程结构包含标识符、逻辑功能、效率与性能、辅助调试字段。线程创建与生命周期分为创建FRunnable类对象、创建FRunnableThread对象两步,通过FRunnable的生命周期管理实现线程运行与停止。
UE4线程管理流程包括继承并创建FRunnable类对象、创建FRunnableThread对象,生命治疗仪线程创建代码。
UE4中的几种异步方式底层使用线程实现,学习了线程类型、创建、生命周期、销毁方法,为下篇学习引擎特殊线程打下基础。
图解UE4源码AI行为树系统 其二 一棵行为树是怎么被运行起来的
让我们深入理解UE4中AI行为树的运行机制。首先,行为树的运行流程大致分为以下几个步骤:发起执行: 可以通过AAIController::RunBehaviorTree()函数或Run Behavior任务节点启动新树。
抽象逻辑理解: 从Run Behavior任务节点出发,关键在于OwnerComp.PushInstance(*BehaviorAsset),这涉及子树的监控和结束条件。
检查与加载: 在运行前,UBehaviorTreeComponent会对子树资源、全局UBehaviorTreeManager、发起节点的父节点意愿进行检查。只有当所有条件满足,才会加载行为树资源。
内存计算与初始化: 加载后,通过FNodeInitializationData计算节点的执行顺序、内存需求,注入顶层decorator,然后设置初始值和内存偏移。
实例化与缓存: 将计算结果的树模板存入缓存,供后续使用。加载完成后,行为树实例会被添加到InstanceStack并标记为活跃。
新树加载并初始化完毕后,执行流程开始于根节点的服务调用和根节点的执行。每个节点的详细运行机制会在后续内容中进一步探讨。理解这些步骤有助于我们更好地掌握行为树的控制和执行逻辑。UE入门笔记(1):编译UE4源码 + apk打包
实验环境:win / VS专业版 / UE4..
准备工作①获取UE4源码:按照官方教程,完成邮件确认后即可下载 UE4..2源码。
记得下载Commit.gitdeps.xml文件,后续会用到。
②VS安装工具包:打开Visual Studio Installer,选中并安装
2、编译
下面操作均基于UE4源码文件夹
①执行bat文件
a)运行setup.bat,如出现下面错误,则需要替换Commit.gitdeps.xml文件
b)运行GenerateProjectFiles.bat,如出现下面错误,则将文件路径改短
②编译
打开UE4.sln,右键UE4选“生成”,编译过程多分钟
③UE4,启动!
编译完成后,打开Engine\Binaries\Win,找到UE4Editor.exe,即可启动。
3、安卓环境配置
下载Android Studio并在UE4部署安卓:参考官方教程以及UE部署到Android以及杂症的解决,配置过程较为复杂,一步步来不要跳步。
4、打包并测试
打包过程报错:
①packagingresults: error: failed to build "uattempproj.proj"
解决:打开项目.sln,重新生成AutomationTool
②找不到dx文件
解决:打开C:\Users\Administrator\AppData\Local\Android\Sdk\build-tools,将或版本文件夹中的dx.bat 和 lib 文件夹中的 dx.jar 复制到 .0.0 版本文件夹的对应位置。(build-tools从版本之后把dx的方式去掉了,而UE需要这个,没有的话会发布失败)
手机测试报错:
①No Google Play Store Key
解决:UE项目设置->Android中勾选“将游戏数据打包至.apk中”,重新打包
参考链接
① UE部署到Android以及杂症的解决
② UE4学习笔记(1):UE源码下载编译+安卓打包
③ 油管教程《Unreal Engine 4..2 Packaging For Android | Unreal Engine 4..2 Export Android Project》
UE4学习笔记(1):UE源码下载编译+安卓打包
注:该笔记以UE4..2在windows平台为例,vs版本为
1.关联github和Epic账户
要在github上获取UE4源码需要先关联账户,否则找不到源码,网页
按照官网提供流程即可完成 GitHub上的虚幻引擎 - Unreal Engine
记得确认邮件,否则还是(当初就是忘记了,卡了好一会儿)
2.下载UE4源码
在 Releases · EpicGames/UnrealEngine (github.com)中选择自己需要的版本(我使用的是4..2),这步很简单,但需要注意的是还需要将Commit.gitdeps.xml文件也一并下载,用于替换同名文件(有些版本则没有这样的文件),不替换的话后续会报错(之后步骤中会提到)
解压后目录如下:
3.执行bat文件
(1)点击运行setup.bat,没有替换Commit.gitdeps.xml文件可能会出现如下问题:
(2)点击运行GenerateProjectFiles.bat,此过程可能会出现如下问题:
未找到框架 .NETFramework Version=v4.6.2
只需要在VS Installer中选中安装就行:
完成后会生成UE4.sln文件
4.生成
VS打开UE4.sln,开始生成:
但是生成过程中我出现了这样的问题:
UE4 fatal error C: 编译器限制: 达到内部堆限制
error C: 超过了 PCH 的虚拟内存范围问题解决
我出现这样问题的原因是我的C盘空间不够大(分区的时候给的比较少),托管系统设置在C盘,导致无法分配足够的虚拟内存,设置为空间足够的盘即可。
步骤:电脑->属性->高级系统设置->高级->性能设置->高级->更改
OK,成功编译完成
5.安卓打包
该过程有官方文档,并且比较繁琐,直接给出链接:
设置虚幻的Android SDK和NDK | 虚幻引擎文档 (unrealengine.com)
UE部署到Android以及杂症的解决 - 知乎 (zhihu.com)
我就提一下自己遇到的问题,在UE4中进行安卓打包的时候遇到了这样的问题:
原因在于SetupAndroid.bat中,SDK Platform的版本选择是,而在UE项目设置->平台 - Android SDK中的SDK API Levle默认选择latest。但是我安装AS的时候默认给我安装了最新的Android API (此时latest指向的是版本),导致冲突。解决方法是UE项目设置中手动设置指定版本,或者在AS中卸载高于版本的Android API。
OK,打包成功!!!
6.打开游戏
但是,是的,还有但是(都最后一步了,还有问题OVO!!!),在手机上下载安装,打开后是这样的:
原来是因为打包除了生成apk文件还生成了obb,至于Google Play Store Key应该就是一个密钥了。
解决方法是在UE项目设置->Android中勾选“将游戏数据打包至.apk中”,我们可以看到对这个勾选项的解释:
行,勾选后重新打包,成功运行:
UE4-Slate源码学习(二)slate事件触发
在探讨UE4-Slate源码学习中,首先进入概念理解阶段,虚拟触摸的开启会将鼠标左键操作转化为OnTouchStarted事件,使得编辑器下通过鼠标也能触发UI的触摸相关事件。实现这一功能的关键在于
FSlateApplication类中两个方法:IsFakingTouchEvents()用于判断是否开启虚拟触摸,SetGameIsFakingTouchEvents()用于设置虚拟触摸状态。
在平台调用Slate时,根据不同事件类型创建FPointerEvent对象,作为事件处理的载体,其包含触发事件的按键信息、鼠标位置、索引、是否为触摸事件等数据,用于后续事件的精确处理。
Slate用户类FSlateUser包含了索引、鼠标位置、聚焦对象、捕获状态和WidgetPath等信息,通过实例化多个FSlateUser对象,程序可以追踪多个用户输入,例如在多人游戏场景中,能够精准识别当前谁触发了A键。
聚焦和捕获功能分别通过Widget的聚焦和捕获机制实现,当聚焦后,事件将被相应Widget接收,并触发一系列聚焦相关的事件,如OnFocusReceived、OnFocusChanging、OnFocusLost等。以按钮点击为例,点击按钮触发OnMouseDown事件,若按钮被捕获,则移动到按钮外松开鼠标仍会触发按钮的OnMouseUp事件。
在处理输入事件时,会涉及多种策略,如FArrangedWidget、FArrangedChildren和FWidgetPath等,用于确定事件处理的路径和流程。FEventRouter类根据输入事件和用户输入策略(FDirectPolicy、FToLeafmostPolicy、FTunnelPolicy、FBubblePolicy)来组织和分发事件。
处理鼠标和触摸输入的流程分为OnMouseDown和OnTouchStarted,通过Route函数根据策略处理事件,实现事件的触发和响应。移动事件则通过OnMouseMove和OnTouchMoved处理,根据输入类型和用户状态执行相应操作。拖拽事件OnDragDetected则在拖拽开始时触发,允许开发者自定义拖拽行为和数据传递。
最终,事件处理完成后,将调用相关函数清理记录,包括更新用户位置和路径,以及触发OnMouseUp或OnTouchEnded等事件。
UE4-Slate源码的学习涵盖了事件触发、用户输入处理、事件路由策略等多个方面,理解这些机制和流程对于深入掌握Slate框架至关重要。源码版本4..2提供了丰富的功能和细节,为开发者提供了一套强大且灵活的UI管理解决方案。