欢迎来到皮皮网网首页

【游戏的源码泄露】【apache源码实现】【mybatis 3.2.8 源码】spark yarn 源码

来源:游乐场源码 时间:2024-12-28 17:50:19

1.Hadoop3.0将出,Spark会取代Hadoop吗
2.Spark-Submit 源码剖析
3.Spark源码解析2-YarnCluster模式启动
4.为什么Spark发展不如Hadoop

spark yarn 源码

Hadoop3.0将出,Spark会取代Hadoop吗

       (1)先说二者之间的区别吧。

       é¦–先,Hadoop与Spark解决问题的层面不同。

       Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。

       åŒæ—¶ï¼ŒHadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。Spark,则是那么一个专门用来对那些分布式存储的大数据进行处理的工具,它并不会进行分布式数据的存储。

       å…¶æ¬¡ï¼Œè¿˜æœ‰ä¸€ç‚¹ä¹Ÿå€¼å¾—注意——这两者的灾难恢复方式迥异。因为Hadoop将每次处理后的数据都写入到磁盘上,所以其天生就能很有弹性的对系统错误进行处理。

       Spark的数据对象存储在分布于数据集群中的叫做弹性分布式数据集(RDD: Resilient Distributed Dataset)中。这些数据对象既可以放在内存,也可以放在磁盘,所以RDD同样也可以提供完成的灾难恢复功能。

       ç”±äºŽä¸¤è€…的侧重点不同,使用场景不同,其实并没有替代之说。Spark更适合于迭代运算比较多的ML和DM运算。因为在Spark里面,有RDD的概念。RDD可以cache到内存中,那么每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作。但是,我们也要看到spark的限制:内存。我认为Hadoop虽然费时,但是在OLAP等大规模数据的应用场景,还是受欢迎的。目前Hadoop涵盖了从数据收集、到分布式存储,再到分布式计算的各个领域,在各领域都有自己独特优势。

       (2)为什么有这么多人不看好Hadoop,力捧Spark呢?

       å¾ˆå¤šäººåœ¨è°ˆåˆ°Spark代替Hadoop的时候,其实很大程度上指的是代替MapReduce。

       MapReduce的缺陷很多,最大的缺陷之一是Map + Reduce的模型。这个模型并不适合描述复杂的数据处理过程。很多公司把各种奇怪的Machine Learning计算用MR模型描述,不断挖掘MR潜力,对系统工程师和Ops也是极大挑战了。很多计算,本质上并不是一个Map,Shuffle再Reduce的结构,比如我编译一个SubQuery的SQL,每个Query都做一次Group By,我可能需要Map,Reduce+Reduce,中间不希望有无用的Map;又或者我需要Join,这对MapReduce来说简直是噩梦,什么给左右表加标签,小表用Distributed Cache分发,各种不同Join的Hack,都是因为MapReduce本身是不直接支持Join的,其实我需要的是,两组不同的计算节点扫描了数据之后按照Key分发数据到下一个阶段再计算,就这么简单的规则而已;再或者我要表示一组复杂的数据Pipeline,数据在一个无数节点组成的图上流动,而因为MapReduce的呆板模型,我必须一次一次在一个Map/Reduce步骤完成之后不必要地把数据写到磁盘上再读出,才能继续下一个节点,因为Map Reduce2个阶段完成之后,就算是一个独立计算步骤完成,必定会写到磁盘上等待下一个Map Reduce计算。

       ä¸Šé¢è¿™äº›é—®é¢˜ï¼Œç®—是每个号称下一代平台都尝试解决的。现在号称次世代平台现在做的相对有前景的是Hortonworks的Tez和Databricks的Spark。他们都尝试解决了上面说的那些问题。Tez和Spark都可以很自由地描述一个Job里执行流。他们相对现在的MapReduce模型来说,极大的提升了对各种复杂处理的直接支持,不需要再绞尽脑汁“挖掘”MR模型的潜力。综上,Spark数据处理速度秒杀MapReduce因为其处理数据的方式不一样,会比MapReduce快上很多。

       (3)可以判Hadoop“死刑”吗?

       ç›®å‰å¤‡å—追捧的Spark还有很多缺陷,比如:

       1、稳定性方面,由于代码质量问题,Spark长时间运行会经常出错,在架构方面,由于大量数据被缓存在RAM中,Java回收垃圾缓慢的情况严重,导致Spark性能不稳定,在复杂场景中SQL的性能甚至不如现有的Map/Reduce。

       2、不能处理大数据,单独机器处理数据过大,或者由于数据出现问题导致中间结果超过RAM的大小时,常常出现RAM空间不足或无法得出结果。然而,Map/Reduce运算框架可以处理大数据,在这方面,Spark不如Map/Reduce运算框架有效。

       3、不能支持复杂的SQL统计;目前Spark支持的SQL语法完整程度还不能应用在复杂数据分析中。在可管理性方面,SparkYARN的结合不完善,这就为使用过程中埋下隐忧,容易出现各种难题。

       Spark和Hadoop谁强谁弱?在比较Hadoop和Spark方面要记住的最重要一点就是,它们并不是非此即彼的关系,因为它们不是相互排斥,也不是说一方是另一方的简易替代者。两者彼此兼容,这使得这对组合成为一种功能极其强大的解决方案,适合诸多大数据应用场合。

       ä¹Ÿå°±æ˜¯è¯´ï¼Œå¤§æ•°æ®è¡Œä¸šçš„老鸟们如果只会Hadoop就要当心了,挤出时间来学习Spark和其他新技术是绝对必要的;而对于目前正准备尝试大数据培训的朋友们,从Hadoop开始仍然是最好的选择。长远来看新技术总会不断出现,不管是Spark还是Tez似乎都有着更美妙的大数据前景,然而没有人会劝你完全抛开Hadoop。

Spark-Submit 源码剖析

       直奔主题吧:

       常规Spark提交任务脚本如下:

       其中几个关键的参数:

       再看下cluster.conf配置参数,如下:

       spark-submit提交一个job到spark集群中,大致的经历三个过程:

       代码总Main入口如下:

       Main支持两种模式CLI:SparkSubmit;SparkClass

       首先是checkArgument做参数校验

       而sparksubmit则是通过buildCommand来创建

       buildCommand核心是AbstractCommandBuilder类

       继续往下剥洋葱AbstractCommandBuilder如下:

       定义Spark命令创建的方法一个抽象类,SparkSubmitCommandBuilder刚好是实现类如下

       SparkSubmit种类可以分为以上6种。SparkSubmitCommandBuilder有两个构造方法有参数和无参数:

       有参数中根据参数传入拆分三种方式,然后通过OptionParser解析Args,构造参数创建对象后核心方法是游戏的源码泄露通过buildCommand,而buildCommand又是通过buildSparkSubmitCommand来生成具体提交。

       buildSparkSubmitCommand会返回List的命令集合,分为两个部分去创建此List,

       第一个如下加入Driver_memory参数

       第二个是通过buildSparkSubmitArgs方法构建的具体参数是MASTER,DEPLOY_MODE,FILES,CLASS等等,apache源码实现这些就和我们上面截图中是对应上的。是通过OptionParser方式获取到。

       那么到这里的话buildCommand就生成了一个完成sparksubmit参数的命令List

       而生成命令之后执行的任务开启点在org.apache.spark.deploy.SparkSubmit.scala

       继续往下剥洋葱SparkSubmit.scala代码入口如下:

       SparkSubmit,kill,request都支持,后两个方法知识支持standalone和Mesos集群方式下。dosubmit作为函数入口,其中第一步是初始化LOG,然后初始化解析参数涉及到类

       SparkSubmitArguments作为参数初始化类,继承SparkSubmitArgumentsParser类

       其中env是测试用的,参数解析如下,parse方法继承了SparkSubmitArgumentsParser解析函数查找 args 中设置的mybatis 3.2.8 源码--选项和值并解析为 name 和 value ,如 --master yarn-client 会被解析为值为 --master 的 name 和值为 yarn-client 的 value 。

       这之后调用SparkSubmitArguments#handle(MASTER, "yarn-client")进行处理。

       这个函数也很简单,根据参数 opt 及 value,设置各个成员的值。接上例,parse 中调用 handle("--master", "yarn-client")后,在 handle 函数中,master 成员将被赋值为 yarn-client。

       回到SparkSubmit.scala通过SparkSubmitArguments生成了args,然后调用action来匹配动作是突击风暴源码submit,kill,request_status,print_version。

       直接看submit的action,doRunMain执行入口

       其中prepareSubmitEnvironment初始化环境变量该方法返回一个四元 Tuple ,分别表示子进程参数、子进程 classpath 列表、系统属性 map 、子进程 main 方法。完成了提交环境的准备工作之后,接下来就将启动子进程。

       runMain则是执行入口,入参则是执行参数SparkSubmitArguments

       Main执行非常的简单:几个核心步骤

       先是打印一串日志(可忽略),然后是openfire 源码启动创建了loader是把依赖包jar全部导入到项目中

       然后是MainClass的生成,异常处理是ClassNotFoundException和NoClassDeffoundError

       再者是生成Application,根据MainClass生成APP,最后调用start执行

       具体执行是SparkApplication.scala,那么继续往下剥~

       仔细阅读下SparkApplication还是挺深的,所以打算另外写篇继续深入研读~

Spark源码解析2-YarnCluster模式启动

       YARN 模式运行机制主要体现在Yarn Cluster 模式和Yarn Client 模式上。在Yarn Cluster模式下,SparkSubmit、ApplicationMaster 和 CoarseGrainedExecutorBackend 是独立的进程,而Driver 是独立的线程;Executor 和 YarnClusterApplication 是对象。在Yarn Client模式下,SparkSubmit、ApplicationMaster 和 YarnCoarseGrainedExecutorBackend 也是独立的进程,而Executor和Driver是对象。

       在源码中,SparkSubmit阶段首先执行Spark提交命令,底层执行的是开启SparkSubmit进程的命令。代码中,SparkSubmit从main()开始,根据运行模式获取后续要反射调用的类名赋给元组中的ChildMainClass。如果是Yarn Cluster模式,则为YarnClusterApplication;如果是Yarn Client模式,则为主类用户自定义的类。接下来,获取ChildMainClass后,通过反射调用main方法的过程,反射获取类然后通过构造器获取一个示例并多态为SparkApplication,再调用它的start方法。随后调用YarnClusterApplication的start方法。在YarnClient中,new一个Client对象,其中包含了yarnClient = YarnClient.createYarnClient属性,这是Yarn在SparkSubmit中的客户端,yarnClient在第行初始化和开始,即连接Yarn集群或RM。之后就可以通过这个客户端与Yarn的RM进行通信和提交应用,即调用run方法。

       ApplicationMaster阶段主要涉及开启一个Driver新线程、AM向RM注册、AM向RM申请资源并处理、封装ExecutorBackend启动命令以及AM向NM通信提交命令由NM启动ExecutorBackend。在ApplicationMaster进程中,首先开启Driver线程,开始运行用户自定义代码,创建Spark程序入口SparkContext,接着创建RDD,生成job,划分阶段提交Task等操作。

       在申请资源之前,AM主线程创建了Driver的终端引用,作为参数传入createAllocator(),因为Executor启动后需要向Driver反向注册,所以启动过程必须封装Driver的EndpointRef。AM主线程向RM申请获取可用资源Container,并处理这些资源。ExecutorBackend阶段尚未完成,后续内容待补充。

为什么Spark发展不如Hadoop

       Spark是一个基于RAM计算的开源码ComputerCluster运算系统,目的是更快速地进行数据分析。Spark早期的核心部分代码只有3万行。Spark提供了与HadoopMap/Reduce相似的分散式运算框架,但基于RAM和优化设计,因此在交换式数据分析和datamining的Workload中表现不错。

       è¿›å…¥å¹´ä»¥åŽï¼ŒSpark开源码生态系统大幅增长,已成为大数据范畴最活跃的开源码项目之一。Spark之所以有如此多的关注,原因主要是因为Spark具有的高性能、高灵活性、与Hadoop生态系统完美融合等三方面的特点。

       é¦–先,Spark对分散的数据集进行抽样,创新地提出RDD(ResilientDistributedDataset)的概念,所有的统计分析任务被翻译成对RDD的基本操作组成的有向无环图(DAG)。RDD可以被驻留在RAM中,往后的任务可以直接读取RAM中的数据;同时分析DAG中任务之间的依赖性可以把相邻的任务合并,从而减少了大量不准确的结果输出,极大减少了HarddiskI/O,使复杂数据分析任务更高效。从这个推算,如果任务够复杂,Spark比Map/Reduce快一到两倍。

       å…¶æ¬¡ï¼ŒSpark是一个灵活的运算框架,适合做批次处理、工作流、交互式分析、流量处理等不同类型的应用,因此Spark也可以成为一个用途广泛的运算引擎,并在未来取代Map/Reduce的地位。

       æœ€åŽï¼ŒSpark可以与Hadoop生态系统的很多组件互相操作。Spark可以运行在新一代资源管理框架YARN上,它还可以读取已有并存放在Hadoop上的数据,这是个非常大的优势。

       è™½ç„¶Spark具有以上三大优点,但从目前Spark的发展和应用现状来看,Spark本身也存在很多缺陷,主要包括以下几个方面:

       â€“稳定性方面,由于代码质量问题,Spark长时间运行会经常出错,在架构方面,由于大量数据被缓存在RAM中,Java回收垃圾缓慢的情况严重,导致Spark性能不稳定,在复杂场景中SQL的性能甚至不如现有的Map/Reduce。

       â€“不能处理大数据,单独机器处理数据过大,或者由于数据出现问题导致中间结果超过RAM的大小时,常常出现RAM空间不足或无法得出结果。然而,Map/Reduce运算框架可以处理大数据,在这方面,Spark不如Map/Reduce运算框架有效。

       â€“不能支持复杂的SQL统计;目前Spark支持的SQL语法完整程度还不能应用在复杂数据分析中。在可管理性方面,SparkYARN的结合不完善,这就为使用过程中埋下隐忧,容易出现各种难题。

       è™½ç„¶Spark活跃在Cloudera、MapR、Hortonworks等众多知名大数据公司,但是如果Spark本身的缺陷得不到及时处理,将会严重影响Spark的普及和发展。