皮皮网

【日志管理系统源码】【vim 源码编译安装】【星悦麻将源码】VINS源码笔记

时间:2024-12-28 04:51:01 来源:js网页源码文件 作者:车牌样机psd 源码

1.白话VINS-Mono之外参标定(二)
2.VINS-Mono:原理深剖+白板从零手推公式+源码逐行精讲!源码

VINS源码笔记

白话VINS-Mono之外参标定(二)

       在深入探讨Vins-mono系统中的笔记外参标定部分之前,我们先回顾一下上篇文章中预积分的源码基本概念。接下来,笔记我们将从实际应用出发,源码深入解析Vins-mono系统中关于外参标定的笔记日志管理系统源码原理与源码。

       Vins-mono作为紧耦合视觉IMU系统,源码在实现中通过在SLAM过程中进行相机与IMU的笔记标定,以应对没有标定信息的源码情况。这种设计的笔记一大优势在于系统能够动态计算相机与IMU之间的标定值。尽管标定过程并非绝对精确,源码但在后续的笔记后端优化中会持续调整这些值。

       配置文件中支持输入精确的源码外参标定值,通过设置config.yaml中的笔记vim 源码编译安装ESTIMATE_ESTRINSIC参数来决定。根据yaml设置,源码有三种情况可供选择:计算相机(Camera)坐标系到IMU坐标系的相对旋转矩阵。这一过程主要在CalibrationExRotation函数中实现。

       在Vins-mono中,标定过程是独立于初始化的一部分,但它是系统启动前的关键步骤。在processimg函数中,初始化之前,即真正的初始化前,需要执行CalibrationExRotation函数。

       虽然Vins-mono文章中并未引入新的在线标定相机与IMU方法,而是基于文献([8])中提出的“monocular视觉惯性状态估计的在线初始化和相机IMU外参标定”。基于Vins-mono的星悦麻将源码代码实现,我们重新整理了文献中Fig. 3的图,并将其转化为图2,旨在从理论到代码详细解析标定过程。

       结合图2,相邻相机关键帧对应的pose可以通过两种方式来构建方程:使用八点法(solveRelativeR)和结合已知的[公式]标定转换(solveRelativeRT)。理论上,通过假设相对旋转量为[公式],可以构建方程并求解。为了深入理解求解过程,我们将参考文献中的式子4~9。

       在求解过程中,考虑到使用对极约束算法时不可避免的匹配错误(outlier),在A矩阵中加入权重计算,铺铺旺 源码以提高在线标定结果的鲁棒性。加权计算方式近似于Huber norm计算(参考式8、9)。

       在CalibrationExRotation核心函数中,实现流程遵循上述式子4~9的步骤。solveRelativeR与solveRelativeRT函数之间的区别在于,后者在多个判断内点个数操作中有所不同。重要的是,ric.inverse()* delta_q_imu * ric这一表达式将式4转换为[公式],通过在循环中不断计算相邻帧特征点对应变换,逐渐构建Ax=0形式的方程。

       对于求解Ax=0问题的SVD分解,它是网易新闻app源码在矩阵非方阵时的特征值分解拓展,可以提取矩阵的主要特征。通过SVD分解,我们可以将问题转化为求解特定的特征值和特征向量,进而求解方程。

       在理解SVD分解为何可以求解Ax=0问题时,关键在于其几何意义。SVD分解将任意矩阵通过一系列旋转和平移转换为对角矩阵,其中的奇异值表示椭球体轴的长度。通过最小奇异值,我们可以求解出最优解,即Ax=0的非零解。

       综上所述,Vins-mono系统中的外参标定过程通过一系列理论解析和代码实现,确保了相机与IMU之间标定值的动态调整和优化。通过对关键步骤的深入理解,我们可以更好地掌握SLAM系统中这一重要模块的工作原理。

VINS-Mono:原理深剖+白板从零手推公式+源码逐行精讲!

       自动驾驶领域在年呈现出快速发展的态势,各大创业公司纷纷宣布获得大额融资。1月日,文远知行完成B轮3.1亿美元融资;1月日,滴滴获得3亿美元融资;2月8日,小马智行获得1亿美元C+轮融资;3月日,Momenta完成C轮总计5亿美元的融资;4月日,大疆创新推出智能驾驶业务品牌“大疆车载”,向汽车企业提供自动驾驶解决方案;4月日,小鹏汽车发布搭载激光雷达的智能汽车小鹏P5,成为全球第一款量产的激光雷达智能汽车;4月日,图森未来在美股上市,被称为“全球自动驾驶第一股”;4月日,华为和北汽合作实现上海城区通勤无干预自动驾驶,成为全球唯一城市通勤自动驾驶量产车。

       在自动驾驶、无人机、增强现实、机器人导航等技术领域中,定位和建图(SLAM)发挥着至关重要的作用,而视觉惯性里程计(VIO)作为SLAM算法中的一个重要分支,其理论复杂度较高。对VIO的掌握能力将直接影响到SLAM从业者的专业水平。VINS-Mono是由香港科技大学飞行机器人实验室(沈邵劼团队)在年开源的知名单目VIO算法。该算法由第一作者秦通(华为天才少年)提出,并在年获得IEEE Transactions on Robotics期刊的最佳论文奖。VINS-Mono使用单目相机和惯性测量单元(IMU)实现了视觉和惯性联合状态估计,同时能够估计传感器外参、IMU零偏以及传感器时延,是一款经典且优秀的VIO框架。

       VINS-Mono在室内、室外大尺度以及高速飞行的无人机场景中均表现出色。在手机AR应用中,该算法优于当前最先进的Google Tango效果。同时,VINS-Mono也是VINS-Fusion算法的基础,应用于汽车SLAM时同样展现出高精度和稳定性。

       在自动驾驶、无人机、增强现实、机器人导航等领域的岗位中,掌握VINS-Mono算法成为了关键技能之一。为此,计算机视觉life团队推出了独家课程《VINS-Mono:原理深剖+白板从零手推公式+源码逐行精讲》。该课程通过详细的步骤解读、疑难问题解析、结合作者回复的issue理解,帮助学员深入掌握VINS-Mono背后的原理。课程内容覆盖从基础理论到复杂公式的推导,通过白板从零开始手推公式的方式,使学员能够理解复杂公式的形成过程,从而真正掌握VINS-Mono的原理。课程价格根据购买时间调整,购买越晚价格越高。如有疑问,学员可加入QQ群()咨询,购买成功后会自动显示内部答疑群。

关键词:slim框架源码

copyright © 2016 powered by 皮皮网   sitemap