欢迎来到皮皮网网站!

【优极限源码】【中文聊天机器人web源码】【十三合一杀鱼源码】fork内核源码_fork源代码

时间:2024-12-28 19:23:42 来源:linux 路由器源码

1.linux0.11源码分析-fork进程
2.深入理解 slab cache 内存分配全链路实现
3.剖析Linux内核源码解读之《实现fork研究(二)》
4.linux文件操作内核源码解密
5.linux命令行命令执行过程是内核什么?
6.剖析Linux内核源码解读之《实现fork研究(一)》

fork内核源码_fork源代码

linux0.11源码分析-fork进程

       在操作系统中,Linux0.源码中的源码源代fork函数执行流程分为启动和系统调用两个阶段。启动阶段首先在init/main.c中执行init用于启动shell,内核让用户执行命令。源码源代

       在include/unistd.h中定义了宏,内核表示将__NR_fork的源码源代优极限源码值复制给eax寄存器,并将_res与eax绑定。内核使用int 0x中断后,源码源代系统调用函数system_call被调用,内核从sys_call_table中找到对应的源码源代函数执行。fork函数执行时,内核操作系统会在内核栈里保存相关寄存器,源码源代准备中断返回。内核

       接着,源码源代操作系统通过int调用system_call,内核在kernel/system_call.s中执行call _sys_call_table(,%eax,4)指令。内核栈中,因为是段内跳转,所以cs不需要入栈。ip指向call指令的下一句代码。执行call指令进入系统调用表。

       在includ/linux/sys.h中,系统调用表是一个数组,根据eax即系统函数编号找到对应的函数执行。对于fork,__NR_fork值2被放入eax寄存器,%eax * 4找到sys_fork。执行sys_fork后,调用find_empty_process函数找到可用的中文聊天机器人web源码进程号,并放入eax寄存器返回。

       接着,系统调用执行copy_process函数建立新进程结构体并复制数据。新进程的ip出栈,执行完copy_process后,系统调用返回,内核栈状态改变。此阶段最后通过iret指令弹出寄存器,恢复中断前状态。

       总结,fork函数通过复制当前进程结构体、处理信号并初始化新进程,实现父进程与子进程的创建与共享。子进程返回值为0,父进程返回新子进程的pid。通过fork函数的执行,操作系统能够高效地创建进程,实现多任务处理。

深入理解 slab cache 内存分配全链路实现

       本文基于内核5.4版本探讨slab cache内存分配的全链路实现。在深入理解slab cache架构图之后,我们将从内核源码角度拆解实现细节。首先,slab cache如何进行内存分配?以内核从task_struct_cachep中申请task_struct对象为例,解析内存分配流程。

       内核使用fork()系统调用创建进程时,需要管理task_struct结构,为此设置专属slab cache(task_struct_cachep)。接下来,十三合一杀鱼源码我们将聚焦于如何在slab cache中分配内存。

       内核通过fork.c文件中的dup_task_struct函数为进程申请并初始化task_struct对象。同时,kmem_cache_alloc_node函数指示slab cache从指定的NUMA节点分配对象。

       slab cache的快速分配路径

       slab cache初始进入快速分配路径(fastpath),首先尝试从cpu本地缓存(kmem_cache_cpu->freelist)获取对象。在获取kmem_cache_cpu结构时,需确保它是当前执行进程的cpu缓存。在配置了CONFIG_PREEMPT的情况下,允许优先级更高的进程抢占当前cpu,导致进程调度到其他cpu执行。此时,用于快速分配的对象可能与当前cpu的缓存不一致,内核通过循环判断tid一致性以防止此情况。

       内核从cpu缓存slab中获取第一个空闲对象。若无空闲对象或NUMA节点不匹配,则进入慢速分配路径(slowpath)。

       slab cache的慢速分配路径

       在慢速路径(slowpath)中,内核关闭中断并重新获取cpu本地缓存,防止进程在中断关闭前被抢占。随后,检查本地cpu缓存的slab容量,确保有空闲对象。若本地缓存为空,跳转至new_slab分支,进入慢速路径。若非空,内核再次检查kmem_cache_cpu->freelist,南宁溯源码燕窝生产厂家以防止进程中断后其他进程释放对象到缓存中。若此时有空闲对象,则直接从kmem_cache_cpu->freelist分配。若无空闲对象,则检查slab本身的freelist。

       分配内存流程

       内核在redo分支确认本地cpu缓存无空闲对象后,开始分配内存。首先在本地cpu缓存查找,若无空闲对象,则转至NUMA节点缓存的partial列表。在partial列表中查找可分配的slab,将其提升为本地cpu缓存,并更新kmem_cache_cpu->freelist,分配内存对象。

       若所有列表均为空,内核将跨NUMA节点查找,并尝试申请新slab。在成功申请slab后,内核填充相关属性,初始化freelist链表,并根据配置选择顺序或随机方式初始化。

       slab freelist初始化

       slab freelist初始化有两种方式:顺序或随机。顺序初始化根据内存地址顺序串联空闲对象,而随机初始化则以随机顺序连接。顺序初始化有助于直观理解,而随机初始化则用于安全考虑,避免预测。

       内核按照kmem_cache->size指定尺寸划分物理内存页,聚会派对酒吧娱乐神器源码使用setup_object函数初始化内存区域并进行内存布局。在完成对象内存区域初始化后,slab freelist指针指向第一个初始化的空闲对象,重复此过程直至所有空闲对象串联,最后设置freelist的末尾为null。

       总结

       通过本文的探讨,我们深入了解了slab cache内存分配的完整流程,包括快速和慢速路径、slab对象初始化和内存页详细初始化。理解了这些关键点有助于深入掌握slab cache的内存管理机制。

剖析Linux内核源码解读之《实现fork研究(二)》

       本文深入剖析了Linux内核源码中fork实现的核心过程,重点在于copy_process函数的解析。在Linux系统中,应用层可以通过fork创建子进程或子线程,而内核并不区分两者,它们共享相同的task_struct结构,用于描述进程或线程的状态、资源等。task_struct包含了进程或线程所有关键数据结构,如内存描述符、文件描述符、信号处理等,是内核调度程序识别和管理进程的重要依据。

       copy_process作为fork实现的关键,其主要任务是初始化task_struct结构,分配新进程的PID,并将其加入到运行队列。这个过程中,内核栈的初始化导致了fork()调用的两次返回值不同,这与copy_thread函数中父进程复制内核栈至子进程并清零寄存器值有关。这样,子进程返回0,而父进程继续执行copy_thread后续操作,最后返回子进程的PID。

       对于线程的独有和共享资源,独有资源通常包括线程特定的数据结构和状态,而共享资源则涉及父进程与线程间的共享内存、文件描述符和信号处理等。这些资源的管理对于多线程程序的正确运行至关重要,需确保线程间资源的互斥访问和安全共享。

linux文件操作内核源码解密

       在Linux编程中,文件操作是基础且重要的部分。开发者们常会遇到忘记关闭文件、子进程对父进程文件操作、以及socket连接问题等疑问。其实,一切在Linux内核看来,都归结为文件操作。让我们一起探索内核如何处理这些文件操作,理解背后的结构和机制。

       首先,文件在内核中有三个关键结构体:struct files_struct(打开文件信息表)、struct fdtable(文件描述符表)和struct file(打开文件对象)。这三个结构体共同构成了应用程序与内核交互的桥梁。当进程打开文件时,内核会通过这三个结构体进行管理。

       当一个进程打开多个文件时,struct files_struct存储了所有打开的文件信息,而文件描述符fd通过它指向struct file。单进程使用dup或fork子进程时,文件对象会被共享,多个描述符指向同一对象,这时的读写状态是共享的,但关闭一个描述符不会影响其他。

       对于多线程环境,线程之间的文件操作更为微妙。线程通过CLONE_FILES标志共享父进程的文件信息,这可能导致线程间操作的同步问题。在关闭文件时,如果引用计数大于1,不会立即释放,直到所有引用消失。

       当我们调用open时,do_sys_open系统调用负责获取描述符、创建对象并连接两者。写文件时,内核会跟踪文件位置并调用write方法进行实际操作,驱动程序负责具体实现。关闭文件则有主动和被动两种情况,主动关闭可能因引用计数不为零而无法立即释放,而进程退出时会自动关闭所有打开的文件。

       理解Linux文件操作的内核机制,对于编写健壮的程序至关重要。编程不仅是代码的堆砌,更是对系统底层原理的掌握。希望这个深入解析能帮助你解答疑惑,后续的系列文章和视频也欢迎查阅,共同提升我们的技术素养。

       附件:

       宏伟精讲系列文章

       宏伟技术:我为什么要在知乎写博客?

       宏伟技术:内核探秘·线程与文件操作

       宏伟技术:理解双堆栈原理

       宏伟技术:Linux popen和system函数详解

linux命令行命令执行过程是什么?

       理解Linux命令行命令执行过程,首先需要了解Linux内核的基本结构与工作原理。

       Bash父进程通过fork操作创建一个子进程。这个操作将父进程的进程环境复制到子进程中,从而实现两个相对独立的执行环境。

       接着,子进程会替换掉自己的页目录,并装填自己的程序,这一过程涉及到Linux内核的内存管理机制。子进程在装填自己的程序后,执行相应的命令。

       在执行过程中,Linux内核通过系统调用、中断处理、页表管理等核心机制,确保命令的正确执行。同时,内核也提供了丰富的API接口,允许用户进程进行文件操作、进程管理等高级功能。

       要深入了解Linux命令行命令执行过程,建议深入学习Linux内核的源代码。通过对内核代码的阅读与分析,你可以更加细致地理解每一个执行步骤背后的原理与细节。

       在实际操作中,可以尝试使用man命令查阅相关函数与系统调用的文档,结合内核源代码,进一步深入探究Linux命令执行的细节。通过实践与理论结合,逐步掌握Linux命令行命令执行的过程。

       总之,Linux命令行命令执行过程是通过fork操作创建子进程,子进程替换页目录并执行命令。这一过程涉及内核的内存管理、系统调用等核心机制。深入学习Linux内核源代码,查阅相关文档,并通过实践,可以更深入地理解Linux命令执行的细节。

剖析Linux内核源码解读之《实现fork研究(一)》

       Linux内核源码解析:深入探讨fork函数的实现机制(一)

       首先,我们关注的焦点是fork函数,它是Linux系统创建新进程的核心手段。本文将深入剖析从用户空间应用程序调用glibc库,直至内核层面的具体过程。这里假设硬件平台为ARM,使用Linux内核3..3和glibc库2.版本。这些版本的库和内核代码可以从ftp.gnu.org获取。

       在glibc层面,针对不同CPU架构,进入内核的步骤有所不同。当glibc准备调用kernel时,它会将参数放入寄存器,通过软中断(SWI) 0x0指令进入保护模式,最终转至系统调用表。在arm平台上,系统调用表的结构如下:

       系统调用表中的CALL(sys_clone)宏被展开后,会将sys_clone函数的地址放入pc寄存器,这个函数实际由SYSCALL_DEFINEx定义。在do_fork函数中,关键步骤包括了对父进程和子进程的跟踪,以及对子进程进行初始化,包括内存分配和vfork处理等。

       总的来说,调用流程是这样的:应用程序通过软中断触发内核处理,通过系统调用表选择并执行sys_clone,然后调用do_fork函数进行具体的进程创建操作。do_fork后续会涉及到copy_process函数,这个函数是理解fork核心逻辑的重要入口,包含了丰富的内核知识。在后续的内容中,我将深入剖析copy_process函数的工作原理。

更多相关资讯请点击【热点】频道>>>