皮皮网
皮皮网

【肇源码头冬天能玩么】【扶摇源码】【javamodbustcp源码】源码设计思路

来源:红鱼图灵识别源码 发表时间:2025-01-16 14:29:48

1.MASA Framework源码解读-01 MASAFacotry工厂设计(一个接口多个实现的源码最佳姿势)
2.Vue源码解析:Vue编译过程的设计思路
3.牛熊分界线主图公式源码
4.Qt源码中的设计模式:撤销/重做框架与备忘录模式
5.dayjs源码解析(一):概念、locale、设计思路constant、源码utils tags
6.深度解析属性动画的设计思路思想 - 带你手动实现属性动画框架

源码设计思路

MASA Framework源码解读-01 MASAFacotry工厂设计(一个接口多个实现的最佳姿势)

       闲来无事,偶然接触到了MASA Framework,源码此框架是设计思路肇源码头冬天能玩么MASA Stack系列中专门用于构建web系统的开源框架。通过在几个小型项目中的源码应用,我发现它确实拥有诸多优点。设计思路为深入理解其内部结构和设计思路,源码我决定详细阅读MASA Framework的设计思路源代码,并记录整个阅读过程。源码如有任何错误或疑问,设计思路还请各位指正。源码

       MASA Framework是设计思路一个功能全面且易于扩展的框架,主要由三个部分组成:BuildingBlocks(抽象层)、源码Contrib(BuildingBlocks的实现)以及Utils(工具库)。官方将BuildingBlocks称为构建块,实际上,这个层将日常开发中频繁使用到的功能抽象出来,如多租户、多语言、仓储、配置中心等,形成易于替换的接口,大大提高了框架的灵活性和可扩展性。

       MASA Framework包含个主要模块,几乎涵盖了日常开发所需的所有组件,从基础服务到高级功能应有尽有。这些模块协同工作,共同构建了一个强大且功能丰富的框架。

       让我们从MASA Framework的核心设计——构建工厂(MasaFactory)开始探讨。构建工厂在框架中起着至关重要的作用,它负责通过配置选项来创建不同实现的实例。在实际项目中,构建工厂设计用于解决接口具有多种实现时的依赖注入问题,比如在面对多实现的场景时,如何优雅地注入并使用特定的扶摇源码实现类。以下是构建工厂解决多实现问题的具体步骤:

       首先,通过下载MASA Framework的源码(地址:github.com/masastack/MA...)进行研究。我们首先关注的是Masa.BuildingBlocks.Data.Contracts类库的设计。MASA Framework的构建工厂通过选项配置,允许为接口的每个实现类指定一个简短的名称。根据传入的不同名称,构建工厂类的Create方法能够创建对应的实例。

       通过使用MASA Framework的构建工厂,我们能够轻松地创建与特定名称对应的面单消息转换类,而无需依赖于IEnumerable集合进行复杂的筛选。这种方法在实现多实现场景时明显更加直观且高效。

       以物流面单申请为例,不同销售订单对应不同的商家店铺,而每个商家店铺可能选择不同的物流商。利用MASA Framework构建工厂实现不同物流商的面单申请,不仅简化了开发过程,而且在使用层面保持了无感的效果。

       总结而言,MASA Framework提供了强大的构建工厂设计,以解决多实现接口的依赖注入问题,简化了开发流程。这个设计不仅限于构建工厂模块,其他模块同样采用了类似的设计理念,允许用户根据需要替换官方实现或结合自定义实现,以适应不同场景和需求。

       MASA Framework的其他模块同样采用了构建工厂的设计,用户既可以替换官方实现,也可以在程序内同时共存官方实现和自定义实现。例如,Service Caller模块不仅支持使用dapr的服务调用,还提供了HTTP服务调用等选项。

Vue源码解析:Vue编译过程的设计思路

       知识要点:

       概览

       在实例化Vue时,首先经过选项合并和数据初始化,最后进入挂载阶段。此阶段分为编译阶段和更新阶段。编译阶段将template编译为生成Vnode的javamodbustcp源码render函数,核心是compile过程。更新阶段则将生成的虚拟Dom映射至真实Dom。接下来重点解析编译阶段。

       编译原理

       了解Vue编译过程前,先学习编译原理。编译器结构通常包含词法分析、语法分析、语义分析、中间代码生成、代码优化和目标代码生成。这些步骤对Vue的编译过程至关重要,如页面渲染、代码转换、Vue代码编译等。

       编译过程

       Vue编译过程由parse、optimize和generate三个阶段组成。parse生成抽象语法树(ast),optimize进行语法树优化,generate将语法树转化为生成Vnode的代码。实际操作以解析简单模板为例,通过ast表示模板字符串,便于后续操作。

       编译入口

       编译入口在$mount函数中,其定义在多个文件中。$mount进行不同处理以适应template的多种写法。编译模板的核心方法compileToFunctions在platforms文件夹下的src/compiler/index.js中。

       函数科里化

       Vue通过函数科里化将代码复用,将baseCompile和baseOptions分离传入,实现不同平台或端的代码封装。这样无需更改内部内容,便于平台间代码适应。

       细节解析

       baseOptions在platforms/web/compiler/options.js文件中定义,包含平台相关方法和属性。baseCompile是编译流程核心实现,compile函数在src/complier/create-compiler.js最内层完成。

       创建编译函数

       createCompileToFunctionFn将编译后的pgpool源码代码缓存,用于下次使用,同时将代码字符串转换为函数形式,生成render函数和静态渲染函数集合。

       总结

       本章从整体上介绍了Vue挂载过程和编译原理,解析了多次回调处理编译函数的原因。下章将结合源码深入学习Vue内部编译过程,了解template如何转换为生成Vnode的render函数。欲了解更多解析,点击这里查看。

牛熊分界线主图公式源码

       1. 牛熊分界线主图公式源码的定义:它是一种技术分析工具,用于判断股票市场的趋势和转折点,其核心思想是通过特定的算法分析股票价格的支撑和压力位。

       2. 源码的基本思路:牛熊分界线公式源码通过分析历史价格数据、交易量以及其他相关指标,计算出股票价格的支撑和压力位。当价格突破这些关键点位时,可能预示着市场趋势的变化。

       3. 源码的复杂性:为了精确捕捉市场的拐点,牛熊分界线公式源码通常涉及多种技术分析工具和方法的组合。编写源码需要一定的编程和数据分析能力,以确保计算的准确性和实时性。

       4. 源码的准确性:牛熊分界线的结果依赖于数据的准确性和公式的合理性。在实际应用中,投资者应结合其他分析方法,进行综合考虑和判断。

       5. 源码的动态性:随着市场环境的变化和结构的发展,牛熊分界线的计算公式可能需要调整以适应新的市场情况。

       6. 源码的实现和验证:程序员根据设计理念和算法编写源码,并通过测试验证其有效性。一旦验证成功,该源码可以通过软件平台供用户使用,辅助投资决策。

       7. 注意事项:具体的牛熊分界线主图公式源码需要根据特定情况进行分析和编写。如果需要更准确和具体的信息,应咨询专业的软件开发商或程序员,以获得专业的kubemanager源码技术支持和指导。

Qt源码中的设计模式:撤销/重做框架与备忘录模式

       Qt源码中的设计模式:撤销/重做框架与备忘录模式

       备忘录模式(Memento Pattern)是一种行为型设计模式,用于保存对象当前状态并在需要时恢复该状态。此模式适用于保存和恢复对象状态的场景。

       备忘录模式包含发起人(Originator)、备忘录(Memento)和负责人(Caretaker)三个参与者。发起人负责创建备忘录和恢复状态,备忘录存储发起人的状态信息,而负责人管理多个备忘录。

       以下为C++参考示例:Originator类表示需要保存状态的对象,Memento类用于存储Originator的状态,Caretaker负责管理多个备忘录。通过操作Originator实现状态修改、保存和恢复。

       备忘录模式与撤销/重做框架结合使用时,主要关注于保存状态和恢复状态。例如,假设用户通过更改QTextEdit的字体和颜色来实现撤销和重做功能。结合备忘录模式,Memento类记录QTextEdit的状态,简化了操作。

       在此示例中,MyCommand类执行命令,同时兼任备忘录模式的Originator类和命令模式的Receiver类,QUndoStack类则担任备忘录模式的Caretaker类和命令模式的Invoker类。因此,备忘录模式和命令模式结合,使得撤销和重做功能实现更为简洁。

       总结:通过结合使用命令模式和备忘录模式,Qt提供的撤销/重做框架实现了一个设计良好的撤销/重做类逻辑。掌握设计模式思想,有助于理解源码和编写面向对象程序。在Qt源码和实际开发中,设计模式的结合应用常见。

dayjs源码解析(一):概念、locale、constant、utils tags

       深入剖析 Day.js 源码(一):概念、locale、constant、utils

       Day.js 是一款轻量级的时间库,由饿了么的开发大佬 iamkun 维护,主打无需引入过多依赖,以减少打包体积的特性。本文将通过解析 Day.js 的源码,揭示其结构与功能的奥秘,旨在为开发者提供深入理解与应用 Day.js 的工具。

       目录概览

       本文将分五章展开 Day.js 的源码解析,分别从代码结构、基础概念、时间标准、语言(文化)代码以及 locale、constant、utils 的实现进行深入探讨。我们将逐步揭开 Day.js 的核心逻辑与设计思路。

       代码结构与依赖分析

       Day.js 的源代码目录结构简洁明了,主要依赖集中在入口文件 src/index.js 中。此文件依赖链简单,未直接引用 locale 和 plugin 目录下的语言包与插件,体现出 Day.js 优化体积、按需加载的核心优势。

       基础概念与时间标准

       在解析源码之前,理解以下基础概念至关重要,包括时间标准、GMT、UTC、ISO 等。这些标准与概念为后续分析提供了背景知识。

       时间标准解释

       格林尼治平均时间(GMT)与协调世界时(UTC)是本文中的核心时间概念。GMT 作为本初子午线上的平太阳时,而 UTC 则是基于原子时标准,与格林威治标准时间(GTM)关系密切。本文详细解释了 UTC 的定义、用途与与 0 度经线平太阳时的关系。

       ISO 标准

       ISO 是国际标准化组织推荐的日期和时间表示方法。在 JavaScript 中,Date.prototype.toISOString() 方法返回遵循 ISO 标准的字符串,以 UTC 时间为基准。

       语言(文化)代码与 locale

       不同语言对时间的描述各具特色,Day.js 通过 locale 实现了多语言支持,用户可根据需求引入相应的语言包。本文介绍了语言代码与 locale 的关联,以及如何按需加载特定语言。

       constant 与 utils

       src/constant.js 和 src/utils.js 分别负责存储常量与工具函数。constant 文件中包含了时间单位与格式化的正则表达式,而 utils.js 则封装了一系列实用工具函数,用于简化时间操作。

       总结与展望

       本文完成了 Day.js 源码解析的第一部分,深入探讨了概念、locale、constant、utils 的实现。接下来,我们将分析 Day.js 的核心文件 src/index.js,解析 Dayjs 类的实现细节。欢迎关注后续内容,期待与您共同探索 Day.js 的更多奥秘。

深度解析属性动画的思想 - 带你手动实现属性动画框架

       属性动画在日常使用中频繁出现,源码解析资料丰富,但不少同学在阅读源码时感到困惑,难以理解其核心原理和设计思想。本文旨在通过参考源码,简化过程,帮助大家设计一个精简版的属性动画框架,以便更好地理解属性动画的源码设计原则与理念。

       首先,理解属性动画本质。属性动画是针对对象属性在一定时间内以特定速度进行的动态改变,如位置、大小、透明度等。与补间动画相比,属性动画能够对非View对象进行动画操作,不仅限于View的显示状态修改,更能在对象属性层面实现动态变化。

       属性动画的核心在于,它能够改变对象的实际属性,如将一个按钮的坐标属性进行动态修改,实现按钮位置的平移。而补间动画只能改变View显示效果,无法触及对象的真正属性,导致动画结束后,View状态并未随之改变。

       掌握属性动画的使用方法,如将TextView横向缩放为1.5倍大小。通过`MyObjectAnimator.ofFloat()`方法,指定属性名(如`scaleX`)和目标值,实现动画效果。

       自行设计属性动画框架,考虑动画任务的组成部分,如时间、插值器、重复模式等。通过构建动画属性助理、关键帧管理类、关键帧实体类等,实现动画任务的初始化和执行流程。

       初始化动画任务类后,通过动画属性助理类生成关键帧数组,实现动画过程中的动态变化。关键帧管理类通过遍历传入节点参数初始化关键帧,线性插值器类提供动画速度控制。

       在动画执行过程中,通过监听机制模拟VSync信号,实现动画帧的周期性执行。在`start()`方法中,调用VSyncManager监听信号,通过`doAnimationFrame()`方法实现动画逻辑,计算当前运行百分比,调用关键帧计算出具体属性值,通过反射调用对象的Setter方法,设置动画属性。

       通过上述流程,理解属性动画从初始化到执行的完整过程,掌握关键帧计算原理,以及动画控制机制。通过设计一个简单的属性动画框架,可以更深入地理解源码设计思想,提升对属性动画原理的掌握。

       总结属性动画设计过程,通过实践和代码实现,不仅能够熟练使用属性动画,还能深入理解其核心思想和工作原理。掌握这些知识后,阅读和分析源码将更加得心应手。

MaskFormer源码解析

       整个代码结构基于detectron2框架,代码逻辑清晰,从配置文件中读取相关变量,无需过多关注注册指令,核心在于作者如何实现网络结构图中的关键组件。MaskFormer模型由backbone、sem_seg_head和criterion构成,backbone负责特征提取,sem_seg_head整合其他部分,criterion用于计算损失。

       在backbone部分,作者使用了resnet和swin两种网络,关注输出特征的键值,如'res2'、'res3'等。在MaskFormerHead中,核心在于提供Decoder功能,这个部分直接映射到模型的解码过程,通过layers()函数实现。

       pixel_decoder部分由配置文件指定,指向mask_former/heads/pixel_decoder.py文件中的TransformerEncoderPixelDecoder类,这个类负责将backbone提取的特征与Transformer结合,实现解码过程。predictor部分则是基于TransformerPredictor类,负责最终的预测输出。

       模型细节中,TransformerEncoderPixelDecoder将backbone特征与Transformer结合,生成mask_features。TransformerEncoderPixelDecoder返回的参数是FPN结果与Transformer编码结果,后者通过TransformerEncoder实现,关注维度调整以适应Transformer计算需求。predictor提供最终输出,通过Transformer结构实现类别预测与mask生成。

       损失函数计算部分采用匈牙利算法匹配查询和目标,实现类别损失和mask损失的计算,包括dice loss、focal loss等。整个模型结构和输出逻辑清晰,前向运算输出通过特定函数实现。

       总的来说,MaskFormer模型通过backbone提取特征,通过Transformer实现解码和预测,损失函数计算统一了语义分割和实例分割任务,实现了一种有效的方法。理解代码的关键在于关注核心组件的功能实现和参数配置,以及损失函数的设计思路。强烈建议阅读原论文以获取更深入的理解。

相关栏目:热点