1.ShardingSphere 4.x FAQ
2.常ç¨çå大pythonå¾åå¤çå·¥å
·
3.多个系统源代码暴露在互联网,脱敏脱敏超四百万公民个人隐私信息存在泄露的源码风险
4.项目实战SpringBoot+Vue基于easyexcel实现Excel大数据量的导入导出(包含数据脱敏)--简单易上手
ShardingSphere 4.x FAQ
在ShardingSphere中,如果SQL执行不正确,代码首先需要开启sql.show配置,脱敏脱敏它在Sharding-Proxy以及Sharding-JDBC 1.5.0版本之后提供了帮助。源码此配置默认关闭,代码官网公告源码开启后,脱敏脱敏系统会将SQL解析上下文、源码改写后的代码SQL以及最终路由至的数据源的详细信息打印至info日志,方便调试。脱敏脱敏
遇到源码编译错误时,源码应了解ShardingSphere使用lombok实现代码简化,代码具体使用和安装细节可参考lombok官网。脱敏脱敏sharding-orchestration-reg模块需要先执行mvn install命令,源码根据protobuf文件生成gRPC相关的代码java文件。
在使用Spring命名空间时,若找不到xsd文件,其实Spring命名空间使用规范并未强制要求部署至公网地址。但考虑到部分用户的需求,相关xsd文件也部署至ShardingSphere官网。sharding-jdbc-spring-namespace的520表白网站源码jar包中配置了xsd文件的位置,确保jar包内存在该文件即可。
对于Cloud not resolve placeholder异常,使用行表达式标识符建议使用$->{ ...},避免与Spring本身的属性文件占位符冲突。
在使用inline表达式时,注意Java的整数相除结果为整数,而inline表达式中的Groovy语法则返回浮点数。若需要获得除法整数结果,请使用A.intdiv(B)。
若只有部分数据库分库分表,确实需要将不分库分表的表配置在分片规则中。ShardingSphere会将多个数据源合并为一个逻辑数据源,不配置分片规则会导致无法准确判断应路由至哪个数据源。这时,可以采用配置default-data-source的方式,或单独管理不参与分库分表的数据源。
除了支持自带的分布式自增主键,ShardingSphere也能支持原生的自增主键。但需注意,原生自增主键不能同时作为分片键使用。大型erp源码winform由于ShardingSphere不知晓数据库表结构,原生自增主键不在原始SQL中,无法将其解析为分片字段。若自增主键非分片键,则无需关注;若作为分片键,ShardingSphere无法解析其分片值,可能导致SQL路由至多张表。
指定泛型为Long的SingleKeyTableShardingAlgorithm遇到ClassCastException问题,确保数据库表中字段与分片算法中的字段类型一致。例如,数据库中字段为int类型时,分片类型应为Integer,而非Long。
在SQLSever和PostgreSQL中,聚合列未加别名可能会抛出异常。这是因为这些数据库会自动为聚合列改名,ShardingSphere在结果归并时可能找不到相应的列。正确的SQL写法应包含别名。
在Oracle数据库使用Timestamp类型的OrderBy语句时,可能会抛出异常。有梦网源码解决方式是配置启动参数oracle.jdbc.J2EECompliant=true,或在项目初始化时设置System.getProperties().setProperty(“oracle.jdbc.J2EECompliant”, “true”);
使用Proxool配置多个数据源时,需要为每个数据源设置alias,以避免每次都从一个数据源获取连接。具体实现方法请参考Proxool官网。
ShardingSphere采用snowflake算法作为默认的分布式自增主键策略,这确保了分布式环境下生成的自增序列递增但不连续,且尾数多为偶数。在3.1.0版本中,尾数为偶数的问题已被解决。
在Windows环境下通过Git克隆ShardingSphere源码时,可能会遇到文件名过长的问题。为了解决,可执行特定命令启用Git对长文件名的支持,或通过注册表或组策略解除操作系统文件名长度限制。
若在运行Sharding-Proxy时找不到或无法加载主类org.apache.shardingshpere.shardingproxy.Bootstrap,可能是因为解压工具将文件名截断。解决方法是执行特定命令。
若实现了ShardingKeyGenerator接口但配置了Type却未生效,需要确保在META-INF/services中创建对应文件指定SPI实现类,tf idf算法源码或在配置中正确指定类型。ShardingSphere的扩展功能需要通过SPI注入才能生效。
当JPA与数据脱敏一起使用时,由于数据脱敏的DDL尚未完成,导致JPA实体类无法同时满足DDL和DML。解决方案需根据具体需求进行调整。
在配置了某个数据连接池的spring-boot-starter(如druid)和sharding-jdbc-spring-boot-starter后,系统启动报错可能是因为两者间的兼容性问题。应检查配置文件和依赖版本,确保兼容性。
在使用sharing-proxy时,动态在sharding-ui上添加新的logic schema,可通过sharding-ui的API实现,具体操作请参考sharding-ui文档。
在使用sharing-proxy时,使用合适的工具连接proxy通常取决于具体需求和环境,常见的连接工具包括JDBC客户端、命令行工具等,需根据实际场景选择。
常ç¨çå大pythonå¾åå¤çå·¥å ·
åææ é¢ï¼ Python image manipulation tools.
ä½è | Parul Pandey
ç¿»è¯ | å®å ¶ç½ä¹å°ãJimmyHua
ä»å¤©ï¼å¨æ们çä¸çéå 满äºæ°æ®ï¼å¾åæ为ææè¿äºæ°æ®çéè¦ç»æé¨åãä½æ 论æ¯ç¨äºä½ç§ç¨éï¼è¿äºå¾åé½éè¦è¿è¡å¤çãå¾åå¤çå°±æ¯åæåå¤çæ°åå¾åçè¿ç¨ï¼ä¸»è¦æ¨å¨æé«å ¶è´¨éæä»ä¸æåä¸äºä¿¡æ¯ï¼ç¶åå¯ä»¥å°å ¶ç¨äºæç§ç¨éã
å¾åå¤çä¸ç常è§ä»»å¡å æ¬æ¾ç¤ºå¾åï¼åºæ¬æä½å¦è£åªã翻转ãæ转çï¼å¾ååå²ï¼åç±»åç¹å¾æåï¼å¾åæ¢å¤åå¾åè¯å«ãPythonæ为è¿ç§å¾åå¤çä»»å¡æ¯ä¸ä¸ªæ°å½éæ©ï¼è¿æ¯å 为å®ä½ä¸ºä¸ç§ç§å¦ç¼ç¨è¯è¨æ£å¨æ¥çæ®åï¼å¹¶ä¸å¨å ¶çæç³»ç»ä¸å è´¹æä¾è®¸å¤æå è¿çå¾åå¤çå·¥å ·ä¾å¤§å®¶ä½¿ç¨ã
让æ们çä¸ä¸å¯ä»¥ç¨äºå¾åå¤çä»»å¡ä¸çå¸¸ç¨ Python åºæåªäºå§ã
1.scikit-image
scikit-imageæ¯ä¸ä¸ªå¼æºçPythonå ï¼éç¨äºnumpyæ°ç»ãå®å®ç°äºç¨äºç 究ï¼æè²åå·¥ä¸åºç¨çç®æ³åå®ç¨å·¥å ·ãå³ä½¿æ¯é£äºåæ¥è§¦Pythonçæç³»ç»ç人ï¼å®ä¹æ¯ä¸ä¸ªç¸å½ç®åç´æ¥çåºãæ¤ä»£ç æ¯ç±æ´»è·çå¿æ¿è 社åºç¼åçï¼å ·æé«è´¨éååè¡è¯å®¡çæ§è´¨ã
èµæº
ææ¡£éè®°å½äºä¸°å¯çä¾ååå®é ç¨ä¾ï¼é 读ä¸é¢çææ¡£ï¼
/abidrahmank/OpenCV2-Python-Tutorials
ç¨æ³
ä¸é¢æ¯ä¸ä¸ªä¾åï¼å±ç¤ºäºOpenCV-Python使ç¨éåå¡æ¹æ³å建ä¸ä¸ªå为âOrappleâçæ°æ°´æå¾åèåçåè½ã
6. SimpleCV
SimpleCV ä¹æ¯ä¸ä¸ªç¨äºæ建计ç®æºè§è§åºç¨ç¨åºçå¼æºæ¡æ¶ãæäºå®ï¼ä½ å°±å¯ä»¥è®¿é®å 个é«æ§è½ç计ç®æºè§è§åºï¼å¦OpenCVï¼èä¸ä¸éè¦å å¦ä¹ äºè§£ä½æ·±åº¦ãæä»¶æ ¼å¼ãé¢è²ç©ºé´çã
å®çå¦ä¹ æ²çº¿å¤§å¤§å°äºOpenCVï¼æ£å¦å®ä»¬çå£å·æ说â计ç®æºè§è§åå¾ç®åâãä¸äºæ¯æSimpleCVçè§ç¹æï¼
å³ä½¿æ¯åå¦è ä¹å¯ä»¥ç¼åç®åçæºå¨è§è§æµè¯æåæºãè§é¢æ件ãå¾ååè§é¢æµé½æ¯å¯äºæä½çèµæº
å®æ¹ææ¡£é常容æç解ï¼èä¸æ大éçä¾åå使ç¨æ¡ä¾å»å¦ä¹ ï¼
/hhatto/pgmagick
ç¨æ³
使ç¨pgmagickå¯ä»¥è¿è¡çå¾åå¤çæ´»å¨å¾å°ï¼æ¯å¦ï¼
å¾å缩æ¾
è¾¹ç¼æå
. Pycairo
Pycairoæ¯å¾åå¤çåºcairoçä¸ç»Pythonæç»ãCairoæ¯ä¸ä¸ªç¨äºç»å¶ç¢éå¾å½¢ç2Då¾å½¢åºãç¢éå¾å½¢å¾æ趣ï¼å 为å®ä»¬å¨è°æ´å¤§å°æ转æ¢æ¶ä¸ä¼å¤±å»æ¸ æ°åº¦ ãPycairoæ¯cairoçä¸ç»ç»å®ï¼å¯ç¨äºä»Pythonè°ç¨cairoå½ä»¤ã
èµæº
PycairoçGitHubåºæ¯ä¸ä¸ªå¾å¥½çèµæºï¼æå ³äºå®è£ å使ç¨ç详ç»è¯´æãè¿æä¸ä¸ªå ¥é¨æåï¼å ¶ä¸æä¸ä¸ªå ³äºPycairoçç®çæç¨ã
åºï¼/pygobject/pycairoæåï¼https://pycairo.readthedocs.io/en/latest/tutorial.htmlç¨æ³
使ç¨Pycairoç»å¶çº¿æ¡ãåºæ¬å½¢ç¶åå¾å梯度ï¼
æ»ç»
æä¸äºæç¨ä¸å è´¹çPythonå¾åå¤çåºå¯ä»¥ä½¿ç¨ï¼æçæ¯ä¼æå¨ç¥çï¼æçå¯è½å¯¹ä½ æ¥è¯´æ¯æ°çï¼è¯çå¤å»äºè§£å®ä»¬ã
多个系统源代码暴露在互联网,超四百万公民个人隐私信息存在泄露的风险
截至年3月,绿盟科技创新研究院监测到上万个互联网中暴露的DevOps资产存在未授权访问情况,源代码仓库成为“重灾区”。这些暴露的源代码仓库包含了境内多家机构的重要系统源代码,部分源代码中硬编码了数据存储服务配置信息,存在敏感信息意外泄露的风险。事件敏感,以下仅示例部分脱敏案例,并已上报给相关监管机构。
案例1:某沿海地区的科技公司使用Gitblit维护多个医疗IT系统源代码时配置错误,导致这些系统存在未经授权的访问漏洞。结果,包括某大学附属医院的排班系统在内的多个平台源代码被公开暴露在互联网上。暴露源代码中包含数据库连接详细信息,导致约万名病人的姓名、身份证号、住址等信息以及近1万名医护人员的姓名、****、学历和身份证等个人隐私信息暴露,存在严重隐私泄露风险。
案例2:某互联网科技有限公司使用Gogs维护开发系统的源代码时配置错误,系统被暴露在互联网中并允许未经授权访问。暴露源代码中含有详细的数据库连接信息,导致大约万公民的姓名、手机号、身份证号码等个人隐私信息暴露,存在严重隐私数据泄露风险。
案例3:某教育科技有限公司使用Gitea维护开发系统的源代码时配置错误,系统存在未经授权的访问漏洞。暴露源代码中包含数据库连接详细信息,导致大约万学员姓名、手机、QQ号等个人隐私信息暴露,存在严重隐私数据泄露风险。
此类安全事件不仅暴露了系统的源代码,还暴露了公民的个人隐私信息及敏感数据。这些泄露可能带来数据被不法分子出售、公民面临电诈风险、安全漏洞暴露以及关键基础设施单位存在安全隐患等严重后果。案例显示,数据泄露风险来源于配置错误,导致源代码、敏感信息被不安全方式暴露在互联网上。
云计算技术广泛应用,但带来了安全风险问题。DevOps流程在提升开发、测试和部署效率的同时,也引入了云上安全风险,尤其是源代码、敏感信息的不当管理。绿盟科技创新研究院通过云上网络空间的测绘,揭示云组件暴露面,识别攻击面,以深入了解可能隐藏的安全风险。
针对此类事件,监管部门开始采取行动。如衡阳市网信办对某开发应用网站数据库存在未授权访问漏洞、泄露公民个人信息的公司进行了行政处罚。企业可通过利用绿盟公有云测绘技术、敏感泄露发现服务以及EASM服务,加强自身风险暴露面的发现与防护。定期对内外部和上下游供应链人员进行安全培训,也能有效减少数据泄露事件。
综上,源代码暴露事件对国家安全、关键基础设施单位、企业和公民隐私构成严重威胁。应加强技术监控、提高安全意识、定期进行安全培训,以有效应对云上安全风险。
项目实战SpringBoot+Vue基于easyexcel实现Excel大数据量的导入导出(包含数据脱敏)--简单易上手
项目实战SpringBoot+Vue通过EasyExcel实现Excel大数据量的高效导入导出,轻松应对数据脱敏需求。 实战过程中,我们展示了以下关键环节: 导入数据:通过多种方式实现,包括简单方法、匿名内部类、自定义ReadListener等,每种方法都适合不同场景的需求。 导出Excel:同样提供多种写法,简单导出和多Sheet页导出,满足不同导出需求。 脱敏处理部分,我们使用了SensitivityEncrypt注解、SensitivitySerializer和SensitivityUtil工具类,确保数据在传输过程中的安全性。 在实际应用中,我们展示了完整的数据导入和导出流程,以及前端页面的配合。遇到数据解析问题时,提供了详细的解决方案。 项目的源码可以在这里找到:[项目源码链接] 感谢EasyExcel团队的详细文档支持,您的支持将继续推动我们不断进步。请随时分享您的使用体验,共同进步。