1.?手写手写?дԴ??????
2.手写 p-limit,40 行代码实现并发控制
3.手写一个简单的源码源码谷歌浏览器拓展插件(附github源码)
4.手写模拟器易语言源代码?
5.那些在公司搞后台技术的人员,是制作制作不是纯手写网站代码啊? 我学网页制作,我做网页纯手写代码。软件感觉太累了。手写手写
6.手写webpacktapable源码,源码源码我叫mtphp源码官方tapable的制作制作性能真的就一定是好的吗?
??дԴ??????
本文旨在通过手写一个线程池,来深入理解ThreadPoolExecutor线程池的软件实现原理。首先,手写手写线程池的源码源码核心目标是资源管理和性能优化,通过池化技术减少线程创建和销毁的制作制作开销。手写线程池的软件实现步骤包括确定核心流程和添加辅助流程,虽然代码简单,手写手写但能体现核心的源码源码池化思想。
手写线程池的制作制作实现涉及到状态管理,如线程池数量和状态的记录,这部分在ThreadPoolExecutor中通过AtomicInteger的高3位和低位实现。线程池的状态流转包括RUNNING、BLOCKED等,并通过execute方法提交任务,这个过程与我们自己的实现类似,包括任务的执行、加入队列和策略决策。
添加执行任务的过程分为增加线程数量和启动线程,这部分与我们最初的设想基本一致。在runWorker方法中,执行线程的核心是调用task.run(),同时还会涉及队列任务的获取。这些步骤与手写线程池的逻辑相吻合,帮助我们更好地理解线程池的工作机制。
总结来说,通过对比分析和实践,我们对ThreadPoolExecutor的线程池实现有了更深入的理解,包括状态管理、任务提交和执行流程等。深入阅读源码后,你会发现线程池的复杂性和优化设计。如果你对Java线程池感兴趣,另类bt源码这将是一次很好的学习和实践机会。
手写 p-limit, 行代码实现并发控制
前端代码中,经常涉及异步逻辑的处理,这类逻辑可能串行执行,也可能并行执行。并行执行的逻辑通常需要进行并发控制,这是编程中常见需求,也是面试题的常考点。
通常我们会使用 p-limit 这样的工具来实现并发控制,例如,下面这段逻辑就是几个异步操作同时执行,且最大并发数限制为2。
那如何自行实现并发控制功能呢?
首先,需要创建一个函数,该函数接收并发数量参数,并返回一个添加并发任务的函数,我们将其命名为 generator。
在 generator 中,我们将添加的并发任务放入队列中,同时记录当前执行中的异步任务数量。
当任务入队后,会检查是否达到了并发上限,如未达到,继续执行更多任务。
具体实现逻辑如下,当任务执行时,计数并改变返回的 promise 状态,然后执行完成后,减少活跃任务数量并执行下一个任务,以此确保并发数限制。
现在,我们有了一段仅行代码的并发控制实现。
接下来,通过测试代码验证其效果。
测试代码使用 setTimeout 和 promise 实现,设置不同的兔小巢源码延迟时间,并发数设置为2。经过测试,结果符合预期:首先并发执行前两个任务,当第一个任务执行完成2秒后,又执行了一个任务,再过一秒,所有任务执行完毕,同时执行了两个任务。
通过测试,我们确认实现了并发控制功能。
回顾整个实现过程,其实就是在队列中保存任务,初始时一次性执行最大并发数的任务,然后每完成一个任务即执行下一个。
此实现实现过程相对简单,但可以进一步优化,比如暴露并发数、提供任务队列清理功能等。
优化后的代码如下,使用 Object.defineProperties 定义只读属性 activeCount 和 pendingCount,并提供清理任务队列的函数。同时,对传入参数进行校验,确保其为整数且非负,Infinity 亦被允许。
优化还涉及确保并发数量准确控制,确保在所有微任务执行完毕后再获取 activeCount。这可以通过在关键逻辑中加入 await Promise.resolve() 实现。
实现并发控制功能的完整代码已通过余行代码实现,这便是 p-limit 源码的简化版本。感兴趣的同学可以自行尝试实现。
总结,js 代码在处理异步逻辑时,常需实现串行、并行执行,并进行并发控制。通过队列管理任务,cis 扫描 源码初始时批量执行最大并发数的任务,每完成一个任务即执行下一个,确保并发控制的实现。此外,确保获取任务数量的准确性,需要在所有微任务执行完毕后获取 activeCount。通过余行代码即可实现并发控制功能,这与 p-limit 的实现原理相似,有兴趣的开发者可以自行尝试。
手写一个简单的谷歌浏览器拓展插件(附github源码)
手写谷歌浏览器插件教程:简易实现与代码详解
首先,让我们通过一个直观的示例来启动创建过程。点击浏览器地址栏输入 chrome://extensions/,即可直接访问扩展程序管理界面。 核心配置文件是 manifest.json,这个文件记录了插件的基本信息,如名称、描述、权限等,是插件身份的身份证。 当插件被激活时,用户会看到一个弹出层,这是通过编写 popup.html 来实现的,它包含了一个简单的HTML界面,用于交互或显示信息。 为了保持代码的清晰,我们把相关的脚本逻辑分离到单独的 popup.js 文件中,这样也支持使用 script 标签直接嵌入。在该文件中,我们将实现插件的核心功能。 此外,我们还需要一个辅助文件 inject.js,它的任务是将特定的代码注入到目标网页,实现所需功能,如上图所示。 整个项目的目录结构清晰可见,便于管理和维护。但这里只是apicloud应用源码基础部分,更多功能的实现和优化将在后续篇章中详细介绍。手写模拟器易语言源代码?
手写模拟器是一个复杂的项目,不容易在易语言中实现,因为易语言主要用于编写桌面应用程序,而模拟器通常需要底层硬件访问和复杂的逻辑处理。以下是一个非常简化的示例,用易语言编写的模拟器,用于演示如何模拟一些基本的手写输入。
// 定义一个字符串变量来存储手写内容
手写内容 = ""
// 创建一个GUI窗口
窗口 = CreateWindow(0, 0, , , "手写模拟器", 0)
// 创建一个文本框用于显示手写内容
文本框 = CreateEdit(窗口, , , , , "")
// 创建一个按钮,用于清除手写内容
清除按钮 = CreateButton(窗口, , , , , "清除")
// 创建一个按钮,用于保存手写内容
保存按钮 = CreateButton(窗口, , , , , "保存")
// 创建一个画布,用于手写模拟
画布 = CreateCanvas(窗口, , , , )
// 设置画布背景颜色
CanvasSetBrushColor(画布, RGB(, , ))
CanvasFillRect(画布, 0, 0, , )
// 处理按钮点击事件
OnButtonClicked(清除按钮, 清除内容)
OnButtonClicked(保存按钮, 保存内容)
// 处理鼠标移动事件,模拟手写
OnMouseMove(画布, 手写)
OnMouseLeftDown(画布, 手写)
// 显示窗口
ShowWindow(窗口)
// 事件处理函数:鼠标移动时模拟手写
Function 手写(x, y)
if MouseIsDown(0) then
// 在画布上绘制手写效果
CanvasSetPenColor(画布, RGB(0, 0, 0))
CanvasSetPenWidth(画布, 2)
CanvasLineTo(画布, x, y)
// 将坐标加入手写内容
手写内容 = 手写内容 + "X" + Str(x) + "Y" + Str(y) + ","
end if
End Function
// 事件处理函数:清除手写内容
Function 清除内容()
手写内容 = ""
ClearCanvas(画布)
End Function
// 事件处理函数:保存手写内容
Function 保存内容()
SaveToFile("handwriting.txt", 手写内容)
MessageBox("手写内容已保存到 handwriting.txt 文件中。")
End Function
// 主循环
Do
Sleep(1)
Loop
上面的代码创建了一个简单的GUI窗口,其中包含一个文本框用于显示手写内容、两个按钮(清除和保存)以及一个模拟手写的画布。用户可以在画布上移动鼠标来模拟手写效果,然后通过按钮来清除或保存手写内容。手写内容将保存到名为 "handwriting.txt" 的文件中。
请注意,这只是一个非常基本的手写模拟器示例,实际的手写模拟器会更复杂,涉及到更多的绘图和手写识别算法。此外,易语言在这方面的功能相对有限,因此如果需要更高级的手写模拟器,可能需要考虑使用更强大的编程语言和工具来实现。
那些在公司搞后台技术的人员,是不是纯手写网站代码啊? 我学网页制作,我做网页纯手写代码。感觉太累了。
如果只是网页制作,前期可以借助dreamweaver等开发工具提示进行编辑,时间久了代码慢慢记住了就可以手写了。如果是后台开发例如java,都是要手写的,只是有些属性方法可以通过提示编辑器自动提示,你要写什么必须自己想啊!手写是终极境界来的!恩。
手写webpacktapable源码,官方tapable的性能真的就一定是好的吗?
完整的手写源码仓库tapable是Webpack?插件机制核心。?mini-tapable?不仅解读官方?tapable?的源码,还用自己的思路去实现一遍,并且和官方的运行时间做了个比较,我和webpack作者相关的讨论可以点击查看。webpacktapable源码内部根据newFunction动态生成函数执行体这种优化方式不一定是好的。当我们熟悉了tapable后,就基本搞懂了webpackplugin的底层逻辑,再回头看webpack源码就轻松很多
目录src目录。这个目录下是手写所有的tapablehook的源码,每个hook都用自己的思路实现一遍,并且和官方的hook执行时间做个对比。
tapable的设计理念:单态、多态及内联缓存由于在webpack打包构建的过程中,会有上千(数量其实是取决于自身业务复杂度)个插件钩子执行,同时同类型的钩子在执行时,函数参数固定,函数体相同,因此tapable针对这些业务场景进行了相应的优化。这其中最重要的是运用了单态性及多态性概念,内联缓存的原理,也可以看这个issue。为了达到这个目标,tapable采用newFunction动态生成函数执行体的方式,主要逻辑在源码的HookCodeFactory.js文件中。
如何理解tapable的设计理念思考下面两种实现方法,哪一种执行效率高,哪一种实现方式简洁?
//方法一:constcallFn=(...tasks)=>(...args)=>{ for(constfnoftasks){ fn(...args)}}//方法二:constcallFn2=(a,b,c)=>(x,y)=>{ a(x,y);b(x,y);c(x,y);}callFn及callFn2的目的都是为了实现将一组方法以相同的参数调用,依次执行。很显然,方法一效率明显更高,并且容易扩展,能支持传入数量不固定的一组方法。但是,如果根据单态性以及内联缓存的说法,很明显方法二的执行效率更高,同时也存在一个问题,即只支持传入a,b,c三个方法,参数形态也固定,这种方式显然没有方法一灵活,那能不能同时兼顾效率以及灵活性呢?答案是可以的。我们可以借助newFunction动态生成函数体的方式。
classHookCodeFactory{ constructor(args){ this._argNames=args;this.tasks=[];}tap(task){ this.tasks.push(task);}createCall(){ letcode="";//注意思考这里是如何拼接参数已经函数执行体的constparams=this._argNames.join(",");for(leti=0;i<this.tasks.length;i++){ code+=`varcallback${ i}=this.tasks[${ i}];callback${ i}(${ params})`;}returnnewFunction(params,code);}call(...args){ constfinalCall=this.createCall();//将函数打印出来,方便观察最终拼接后的结果console.log(finalCall);returnfinalCall.apply(this,args);}}//构造函数接收的arg数组里面的参数,就是taska、b、c三个函数的参数constcallFn=newHookCodeFactory(["x","y","z"]);consta=(x,y,z)=>{ console.log("taska:",x,y,z);};constb=(x,y,z)=>{ console.log("taskb:",x,y,z);};constc=(x,y,z)=>{ console.log("taskc:",x,y,z);};callFn.tap(a);callFn.tap(b);callFn.tap(c);callFn.call(4,5,6);当我们在浏览器控制台执行上述代码时:
拼接后的完整函数执行体:
可以看到,通过这种动态生成函数执行体的方式,我们能够同时兼顾性能及灵活性。我们可以通过tap方法添加任意数量的任务,同时通过在初始化构造函数时newHookCodeFactory(['x','y',...,'n'])传入任意参数。
实际上,这正是官方tapable的HookCodeFactory.js的简化版本。这是tapable的精华所在。
tapable源码解读tapable最主要的源码在Hook.js以及HookCodeFactory.js中。Hook.js主要是提供了tap、tapAsync、tapPromise等方法,每个Hook都在构造函数内部调用consthook=newHook()初始化hook实例。HookCodeFactory.js主要是根据newFunction动态生成函数执行体。
demo以SyncHook.js为例,SyncHook钩子使用如下:
const{ SyncHook}=require("tapable");debugger;consttesthook=newSyncHook(["compilation","name"]);//注册plugin1testhook.tap("plugin1",(compilation,name)=>{ console.log("plugin1",name);compilation.sum=compilation.sum+1;});//注册plugin2testhook.tap("plugin2",(compilation,name)=>{ console.log("plugin2..",name);compilation.sum=compilation.sum+2;});//注册plugin3testhook.tap("plugin3",(compilation,name)=>{ console.log("plugin3",compilation,name);compilation.sum=compilation.sum+3;});constcompilation={ sum:0};//第一次调用testhook.call(compilation,"mytest1");//第二次调用testhook.call(compilation,"mytest2");//第三次调用testhook.call(compilation,"mytest3");...//第n次调用testhook.call(compilation,"mytestn");我们用这个demo做为用例,一步步debug。
SyncHook.js源码主要逻辑如下:
constHook=require("./Hook");constHookCodeFactory=require("./HookCodeFactory");//继承HookCodeFactoryclassSyncHookCodeFactoryextendsHookCodeFactory{ }constfactory=newSyncHookCodeFactory();constCOMPILE=function(options){ factory.setup(this,options);returnfactory.create(options);};functionSyncHook(args=[],name=undefined){ //初始化Hookconsthook=newHook(args,name);//注意这里修改了hook的constructorhook.constructor=SyncHook;...//每个钩子都必须自行实现自己的compile方法!!!hook.compile=COMPILE;returnhook;}Hook.js源码主要逻辑如下:
//问题一:思考一下为什么需要CALL_DELEGATEconstCALL_DELEGATE=function(...args){ //当第一次调用时,实际上执行的是CALL_DELEGATE方法this.call=this._createCall("sync");//当第二次或者第n次调用时,此时this.call方法已经被设置成this._createCall的返回值returnthis.call(...args);};...classHook{ constructor(args=[],name=undefined){ this._args=args;this.name=name;this.taps=[];//存储我们通过hook.tap注册的插件this.interceptors=[];this._call=CALL_DELEGATE;//初始化时,this.call被设置成CALL_DELEGATEthis.call=CALL_DELEGATE;...//问题三:this._x=undefined是什么this._x=undefined;//this._x实际上就是this.taps中每个插件的回调//问题四:为什么需要在构造函数中绑定这些函数this.compile=this.compile;this.tap=this.tap;this.tapAsync=this.tapAsync;this.tapPromise=this.tapPromise;}//每个钩子必须自行实现自己的compile方法。compile方法根据this.taps以及this._args动态生成函数执行体compile(options){ thrownewError("Abstract:shouldbeoverridden");}//生成函数执行体_createCall(type){ returnthis.compile({ taps:this.taps,interceptors:this.interceptors,args:this._args,type:type});}..._tap(type,options,fn){ ...this._insert(options);}tap(options,fn){ this._tap("sync",options,fn);}_resetCompilation(){ this.call=this._call;this.callAsync=this._callAsync;this.promise=this._promise;}_insert(item){ //问题二:为什么每次调用testhook.tap()注册插件时,都需要重置this.call等方法?this._resetCompilation();...}}思考Hook.js源码中的几个问题问题一:为什么需要CALL_DELEGATE
问题二:为什么每次调用testhook.tap()注册插件时,都需要重置this.call等方法?
问题三:this._x=undefined是什么
问题四:为什么需要在构造函数中绑定this.compile、this.tap、this.tapAsync以及this.tapPromise等方法
当我们每次调用testhook.tap方法注册插件时,流程如下:
方法往this.taps数组中添加一个插件。this.__insert方法逻辑比较简单,但这里有一个细节需要注意一下,为什么每次注册插件时,都需要调用this._resetCompilation()重置this.call等方法?我们稍后再看下这个问题。先继续debug。
当我们第一次(注意是第一次)调用testhook.call时,实际上调用的是CALL_DELEGATE方法
constCALL_DELEGATE=function(...args){ //当第一次调用时,实际上执行的是CALL_DELEGATE方法this.call=this._createCall("sync");//当第二次或者第n次调用时,此时this.call方法已经被缓存成this._createCall的返回值returnthis.call(...args);};CALL_DELEGATE调用this._createCall函数根据注册的this.taps动态生成函数执行体。并且this.call被设置成this._createCall的返回值缓存起来,如果this.taps改变了,则需要重新生成。
此时如果我们第二次调用testhook.call时,就不需要再重新动态生成一遍函数执行体。这也是tapable的优化技巧之一。这也回答了问题一:为什么需要CALL_DELEGATE。
如果我们调用了n次testhook.call,然后又调用testhook.tap注册插件,此时this.call已经不能重用了,需要再根据CALL_DELEGATE重新生成一次函数执行体,这也回答了问题二:为什么每次调用testhook.tap()注册插件时,都需要重置this.call等方法。可想而知重新生成的过程是很耗时的。因此我们在使用tapable时,最好一次性注册完所有插件,再调用call
testhook.tap("plugin1");testhook.tap("plugin2");testhook.tap("plugin3");testhook.call(compilation,"mytest1");//第一次调用call时,会调用CALL_DELEGATE动态生成函数执行体并缓存起来testhook.call(compilation,"mytest2");//不会重新生成函数执行体,使用第一次的testhook.call(compilation,"mytest3");//不会重新生成函数执行体,使用第一次的避免下面的调用方式:
testhook.tap("plugin1");testhook.call(compilation,"mytest1");//第一次调用call时,会调用CALL_DELEGATE动态生成函数执行体并缓存起来testhook.tap("plugin2");testhook.call(compilation,"mytest2");//重新调用CALL_DELEGATE生成函数执行体testhook.tap("plugin3");testhook.call(compilation,"mytest3");//重新调用CALL_DELEGATE生成函数执行体现在让我们看看第三个问题,调用this.compile方法时,实际上会调用HookCodeFacotry.js中的setup方法:
setup(instance,options){ instance._x=options.taps.map(t=>t.fn);}对于问题四,实际上这和V8引擎的HiddenClass有关,通过在构造函数中绑定这些方法,类中的属性形态固定,这样在查找这些方法时就能利用V8引擎中HiddenClass属性查找机制,提高性能。
HookCodeFactory.js主要逻辑:
classHookCodeFactory{ constructor(config){ this.config=config;this.options=undefined;this._args=undefined;}create(options){ this.init(options);letfn;switch(this.options.type){ case'sync':fn=newFunction(...)breakcase'async':fn=newFunction(...)breakcase'promise':fn=newFunction(...)break}this.deinit();returnfn;}setup(instance,options){ instance._x=options.taps.map(t=>t.fn);}...}手写tapable每个Hook手写tapable中所有的hook,并比较我们自己实现的hook和官方的执行时间
这里面每个文件都会实现一遍官方的hook,并比较执行时间,以SyncHook为例,批量注册个插件时,我们自己手写的MySyncHook执行时间0.ms,而官方的需要6ms,这中间整整倍的差距!!!
具体可以看我的仓库
原文:/post/学习vue源码(9)手写代码生成器
深入学习 vue 源码的系列文章中,我们探讨了模板编译的解析器与优化器部分。在本文中,我们将聚焦于代码生成器的实现原理与操作流程,以实现从 AST(抽象语法树)到 render 函数代码字符串的转换。
代码生成器在模板编译流程中承担着至关重要的角色,其核心任务是将由解析器和优化器处理得到的 AST 转换为可执行的 render 函数代码字符串。这一过程主要通过调用一系列预定义的函数(如 _c、_v、_s)来构建动态代码片段,从而实现模板的动态渲染。
具体而言,代码生成器依据 AST 结构,递归地生成代码片段。对于一个简单的模板,代码生成器会调用 _c 来创建元素,_v 来创建文本节点,而 _s 则用于返回字符串值。这些函数的调用构建了 render 函数的核心逻辑,实现了模板的动态渲染。
解析器负责将模板字符串转换为 AST,例如将上述简单的模板转换为对应的 AST 结构。通过调用代码生成器,可以将 AST 转换为可执行的 render 函数代码字符串。生成后的代码字符串中包含了 _c、_v、_s 等函数调用,这些函数对应着动态创建元素、文本节点以及返回字符串值的操作。
理解代码生成器的关键在于,它如何根据 AST 结构构建渲染函数代码。这一过程涉及到对 AST 中元素、文本和属性的遍历与处理,通过调用特定的生成函数(如 genData 和 genChildren)来构建数据和子节点,最终生成完整的 render 函数代码字符串。
在实现细节中,代码生成器会针对 AST 中的不同节点类型,采用不同的处理逻辑。例如,对于没有属性的节点(el.plain 为 true),代码生成器无需执行数据生成逻辑(genData),而直接跳过该步骤。这种处理方式优化了代码生成效率,确保了渲染函数代码的简洁与高效。
综上所述,代码生成器在模板编译流程中起到了关键作用,通过将 AST 转换为可执行的 render 函数代码,实现了模板的动态渲染。这一过程涉及对 AST 的递归遍历、函数调用构建以及特定逻辑的实现,构成了 vue 模板编译的核心机制。深入理解代码生成器的实现原理有助于开发者更好地掌握 vue 模板编译的底层机制,为开发高质量、高效的应用打下坚实的基础。
2024-12-28 15:20
2024-12-28 14:57
2024-12-28 14:55
2024-12-28 14:26
2024-12-28 14:00
2024-12-28 13:43