皮皮网

【谜题发烧友 源码】【临近社区源码】【赤月科技源码】dmlc源码

时间:2024-12-28 05:26:17 来源:php预约 源码 作者:vbe源码编辑

1.如何在Mac OSX上安装xgboost
2.极简入门TensorFlow C++源码

dmlc源码

如何在Mac OSX上安装xgboost

       1. Mac OSX系统一般自带python,打开终端输入python即可写python代码,所以python环境已经具备了。

       2.安装 Homebrew ,源码 类似于ubuntu中的apt-get和centos中的yum,是OSX里面的一个非常有用软件安装工具。

       /usr/bin/ruby -e "$(curl -fsSL /Homebrew/install/master/install)"

       ç›´æŽ¥å°†ä¸Šè¿°ä»£ç ç²˜è´´è‡³ç»ˆç«¯å³å¯å®‰è£…。(安装这个软件的目的在于更新gcc版本,因为官方文档中说只有最新的gcc版本才能使xgboost支持多线程)

       3.安装最新版本的gcc (gcc-6)

       brew install gcc --without-multilib

       è¿™æ­¥æ¯”较耗时,用了将近1小时。

       4.从git上下载源码

       cd进入你想要安装的目录,然后输入下面的代码。(我是直接在打开终端的目录)

       git clone --recursive /dmlc/xgboost

极简入门TensorFlow C++源码

       前一段时间,我专注在框架开发上,源码并偶尔协助业务同学优化使用TensorFlow的源码代码。在观看dmlc/relay、源码nnvm的源码代码时,我发现了它们的源码谜题发烧友 源码有趣之处。我也对TensorFlow的源码Graph IR、PaddlePaddle的源码Graph IR产生了兴趣,上周五在阅读代码时,源码无意间听到了一个数据竞赛群讨论框架的源码底层实现。几位算法大佬提到了看底层源码可能较为繁琐,源码因为这类代码通常相对容易理解。源码在与群内伙伴的源码交流后,我萌生了撰写一篇关于如何阅读TensorFlow或其他框架底层源码的源码文章。

       选择合适版本的源码临近社区源码bazel,对于阅读TensorFlow源码至关重要。应使用版本为0..0的bazel来拉取TF2.0代码,因为太高的版本或太低的版本可能影响阅读体验。在安装了合适的bazel版本后,使用clion上的bazel插件进行导入,然后配置编译,导入项目,赤月科技源码等待clion编译整个项目。完成编译后,就能愉快地阅读代码,甚至于protobuf生成的文件也能轻松跳转。

       使用c++编译模型是TensorFlow的另一面。尝试使用c++编写模型代码,可以深入理解TensorFlow的git棋牌源码底层机制。主要函数包括CreateGraphDef、ConcurrentSteps、ConcurrentSessions等。通过这些函数,可以构建计算图,定义节点、常量变量、溯源码上市操作符等。这为理解TensorFlow的逻辑提供了直观的视角。

       深入分析代码后,可以了解到TensorFlow的GraphDef机制、Square类的实现、注册到特定op的过程、functor的使用以及最终的实现逻辑。这有助于理解TensorFlow的核心原理,并在阅读源码时进行更深入的思考。

       除了阅读源码,还可以通过编写测试用例来增强理解。TensorFlow提供了丰富的测试用例,如在client_session_test.cc中运行测试程序,可以验证代码的正确性。这不仅有助于理解代码,还能提高对TensorFlow框架的掌握程度。

       阅读源码只是理解TensorFlow原理的开始,深入行业论文和请教行业专家是进一步深入学习的关键。网络上关于机器学习系统的资料丰富多样,但缺少系统性的课程。希望官方能够分享更多框架的干货,并期待在学习过程中总结和分享更多资源。阅读源码虽然复杂,但其背后蕴含的原理和逻辑十分有趣。

关键词:无限极评论源码

copyright © 2016 powered by 皮皮网   sitemap