皮皮网
皮皮网

【socket异步源码】【知识树 源码】【028棋牌源码】jdknative源码

来源:lorawlan 源码 发表时间:2024-12-28 14:12:48

1.安卓jni开发?
2.java编译器软件有哪些(java编译器推荐)
3.怎样把JAVA源代码编译exe文件?
4.java是如何调用native方法?hotspot源码分析必会技能
5.记一次源码追踪分析,从Java到JNI,再到JVM的C++:fileChannel.map()为什么快;源码分析map方法,put方法
6.从HotSpot源码,深度解读 park 和 unpark

jdknative源码

安卓jni开发?

       å¦‚何编写安卓软件

       1、见摇摇2选1安卓版本,刚开始也不知道里面有些什么技术难度,但是要做的目标已经明确了,而且也没有现成的,碰到问题就查资料,慢慢地解决,这样有的放矢,学习的效果非常好。

       2、下面我就开始介绍我们开发需要用的软件:Xcode(软件下载地址:developer.apple/xcode/);IOS模拟器。

       3、需求分析。确定要开发某一款软件的同时要对需求进行分析,开发的app有实际实用意义才可以。开发者需要对软件系统进行概要设计,即系统设计。

       4、谷歌推出的AppInventorAndroidApp开发工具可以让你仅通过拖拉式的简单操作就可以创建自己的AndroidApp。对于那些为了特定目的想要动手尝试开发一个简单应用的用户。

       5、EclipseADTEclipseADT是Eclipse平台下用来开发Android应用程序的插件TheSDKandAVDManager该工具包含很多重要的功能,包括管理不同的AndroidSDK版本(构建目标),Android的版本众多,API上有些兼容性问题。

       6、下面,中科英才就为大家普及一下安卓软件开发入门知识。初级阶段要学习的内容配置环境:全部采用做新版本SDK、ADT、ECLIPSE、JDK。编写或者运行教学示例这时间主要运行的示例如HELLOWORLD,还有SDK带的例子。

Android中怎么通过JNI编程去发送adb指令控制手机

       ç¼–写一个C程序,使用system(“cmdline),直接调用命令行程序即可。

       (constchar*)(*env)-GetStringUTFChars(env,inputStr,JNI_FALSE);LOGI(dufresne---%s,(constchar*)str);//通知虚拟机本地代码不再需要通过str访问Java字符串。

       $cd~/project/Android/JNITest/bin$cd~/project/Android/JNITest/bin我们用ls命令查看,可以看到bin目录下有个classes目录,其目录结构为classes/org/tonny/jni,即classes的子目录结构是android工程的包名org.tonny.jni。

如何用java进行安卓应用的开发

       ç›´æŽ¥ç™¾åº¦æœç´¢å®‰å“开发教程,资源非常多。先去把Java和C学好再说。

       æ˜¯çš„,Java可以用于开发安卓应用。安卓应用的开发可以使用Java编程语言和AndroidSDK(软件开发工具包)。至于“安卓是否会下载居民”,我不太明白您的意思。

       ç¬¬ä¸€æ­¥ï¼Œå®‰è£…jdk,配置jdk环境。百度搜jdk配置第二步,安装AndroidStudio+SDK。或者Eclipse+ADT+AndroidSDK。第三步,需要Android机子或者安装虚拟机。如有疑问,请提出。

       ä¸€ï¼šJavaSE编程Java是一种面向对象的开发语言,Android操作系统的应用层使用Java语言来开发,所以要想进行Android开发必须有良好的Java基础。

       Android应用程序开发是以Java语言为基础的,所以需要有扎实的Java基础知识。首先熟悉java基本语法,然后熟悉设计模式等。

       ç”¨jni写的安卓应用能被反编译吗

       å°†ç¨‹åºè½¬æ¢æˆæœ¬åœ°ä»£ç ä¹Ÿæ˜¯ä¸€ç§é˜²æ­¢åç¼–译的有效方法。因为本地代码往往难以被反编译。开发人员可以选择将整个应用程序转换成本地代码,也可以选择关键模块转换。

       æœ‰å‡ ç§æ–¹å¼æ¥æé«˜è¢«åç¼–译取代码的难度:1关键代码使用jni调用本地代码,用c或者c++编写,因此相对比较难于反编译2混淆java代码。混淆是不改变代码逻辑的情况下,增加无用代码,或者重命名,使反编译后的源代码难于看懂。

       ç”±äºŽapk是Android虚拟机加载的,它有一定的规范,加密apk后Dalvik无法识别apk了。完全避免是不可能的,总有人能够破解写的代码。但是有几种方式来提高被反编译取代码的难度。

       å¦‚何JAVA代码调用?jni吧?安卓的SO文件是linux下的文件,用c或者c++写的。

       ä¸Šé¢è¯´äº†ï¼Œè¿™ç§æ–¹å¼å…¶å®žå¹¶ä¸æ˜¯çœŸæ­£åŠ å¯†ä»£ç ï¼Œå…¶å®žä»£ç è¿˜æ˜¯èƒ½å¤Ÿè¢«äººåç¼–译(有人可能说,使用proguard中的optimize选项,可以从字节流层面更改代码,甚至可以让JD这些反编译软件可以无法得到内容。

       Android中JNI是编译so库的源代码,编译成功后会生成SO库,android中最终是使用SO库的。

安卓开发调用底层硬件

       æ“ä½œæ–¹æ³•å¦‚下:编译后安装该生成的apk即可使用该程序调用底层硬件驱动。大概整个过程就这样,上层app调用框架层的java接口,java接口通过jni调用硬件抽象层即可。

       ï¼ŒAndroid应用程序层;2,应用程序框架层;3,系统运行库层;4,Linux核心层。

       å¯ä»¥å‚考一下/post//

问题/目的问题1Java中哪些API使用到了mmap问题2怎么知道该API使用到了mmap,如何追踪程序的socket异步源码系统调用目的1源码中分析验证,从Java到JNI,再到C++:fileChannel.map()使用的是系统调用mmap目的2源码验证分析:调用mmapedByteBuffer.put(Byte[])时JVM在搞些什么?mmap比普通的read/write快在哪?揭晓答案1mmap在Java NIO中的体现/使用

       看一个例子

// 1GBpublic static final int _GB = 1**;File file = new File("filename");FileChannel fileChannel = new RandomAccessFile(file, "rw").getChannel();MappedByteBuffer mmapedByteBuffer = fileChannel.map(FileChannel.MapMode.READ_WRITE, 0, _GB);for (int i = 0; i < _GB; i++) { count++;mmapedByteBuffer.put((byte)0);}

       其中fileChannel.map()底层使用的就是系统调用mmap,函数签名为: public abstract MappedByteBuffer map(MapMode mode,long position, long size)throws IOException

答案2程序执行的系统调用追踪/** * @author Tptogiar * @description * @date /5/ - : */public class TestMappedByteBuffer{ public static final int _4kb = 4*;public static final int _GB= 1**;public static void main(String[] args) throws IOException, InterruptedException { // 为了方便在日志中找到本段代码的开始位置和结束位置,这里利用文件io来打开始标记FileInputStream startInput = null;try { startInput = new FileInputStream("start1.txt");startInput.read();} catch (IOException e) { e.printStackTrace();}File file = new File("filename");FileChannel fileChannel = new RandomAccessFile(file, "rw").getChannel();MappedByteBuffer map = fileChannel.map(FileChannel.MapMode.READ_WRITE, 0, _GB); //我们想分析的语句问题2for (int i = 0; i < _GB; i++) { map.put((byte)0); // 下文中需要分析的语句目的2}// 打结束标记FileInputStream endInput = null;try { endInput = new FileInputStream("end.txt");endInput.read();} catch (IOException e) { e.printStackTrace();}}}

       把上面这段代码编译后把“.class”文件拉到linux执行,并用linux上的strace工具记录其系统调用日志,拿到日志文件我们可以在日志中看到以下信息(关于怎么拿到日志可以参照我的博文:无(代写)):

       注:日志有多行,这里只选取我们关注的

// ...// 看到了我们打的开始标志openat(AT_FDCWD, "start1.txt", O_RDONLY) = -1 ENOENT (No such file or directory)// ... // 打开文件,文件描述符fd为6openat(AT_FDCWD, "filename", O_RDWR|O_CREAT, ) = 6// 判断文件状态fstat(6, { st_mode=S_IFREG|, st_size=, ...}) = 0// ... // 判断文件状态fstat(6, { st_mode=S_IFREG|, st_size=, ...}) = 0// 进行内存映射mmap(NULL, , PROT_READ|PROT_WRITE, MAP_SHARED, 6, 0) = 0x7f2fd6cd// ...// 程序退出exit(0)// 看到了我们打的结束标志openat(AT_FDCWD, "end.txt", O_RDONLY) = -1 ENOENT (No such file or directory)

       在上面程序的系统调用日志中我们确实看到了我们打的开始标志,结束标志。在开始标志和结束标志之间我们看到了我们的文件"filename"确实被打开了,文件描述符fd = 6;在打开文件后紧接着又执行了系统调用mmap,这一点我们Java代码一致,这样,我们就验证了我们答案1中的知识树 源码结论,可以开始我们的下文了

源码追踪分析,从Java到JNI,再到JVM的C++目的1寻源之旅:fileChannel.map()

       我们知道我们执行Java代码fileChannel.map()确实会在底层调用系统调用,那怎么在源码中得到验证呢?怎么落脚于源码进行分析呢?下面开始我们的寻源之旅

       FileChannelImpl.map() 注:由于代码较长,这里代码中略去了一些我们不关注的,比如异常捕获等

public MappedByteBuffer map(MapMode mode, long position, long size)throws IOException{ // ...try { // ...synchronized (positionLock) { // ...long mapPosition = position - pagePosition;mapSize = size + pagePosition;try { // !我们要找的语句就在这!addr = map0(imode, mapPosition, mapSize);} catch (OutOfMemoryError x) { // 如果内存不足,先尝试进行GCSystem.gc();try { Thread.sleep();} catch (InterruptedException y) { Thread.currentThread().interrupt();}try { // 再次试着mmapaddr = map0(imode, mapPosition, mapSize);} catch (OutOfMemoryError y) { // After a second OOME, failthrow new IOException("Map failed", y);}}} // ...} finally { // ...}}

       上面函数源码中真正执行mmap的语句是在addr = map0(imode, mapPosition, mapSize),于是我们寻着这里继续追踪

       FileChannelImpl.map0()

// Creates a new mappingprivate native long map0(int prot, long position, long length)throws IOException;

       可以看到,该方法是一个native方法,所以后面的源码我们需要到这个FileChannelImpl.class对应的fileChannelImpl.c中去看,所以我们需要去找到JDK的源码

       在JDK源码中我们找到fileChannelImpl.c文件

       fileChannelImpl.c 根据JNI的对应规则,我们找到该文件内对应的Java_sun_nio_ch_FileChannelImpl_map0方法,其源码如下:

JNIEXPORT jlong JNICALLJava_sun_nio_ch_FileChannelImpl_map0(JNIEnv *env, jobject this, jint prot, jlong off, jlong len){ void *mapAddress = 0;jobject fdo = (*env)->GetObjectField(env, this, chan_fd);jint fd = fdval(env, fdo);int protections = 0;int flags = 0;if (prot == sun_nio_ch_FileChannelImpl_MAP_RO) { protections = PROT_READ;flags = MAP_SHARED;} else if (prot == sun_nio_ch_FileChannelImpl_MAP_RW) { protections = PROT_WRITE | PROT_READ;flags = MAP_SHARED;} else if (prot == sun_nio_ch_FileChannelImpl_MAP_PV) { protections =PROT_WRITE | PROT_READ;flags = MAP_PRIVATE;}// !我们要找的语句就在这里!mapAddress = mmap(0,/* Let OS decide location */len,/* Number of bytes to map */protections,/* File permissions */flags,/* Changes are shared */fd, /* File descriptor of mapped file */off); /* Offset into file */if (mapAddress == MAP_FAILED) { if (errno == ENOMEM) { JNU_ThrowOutOfMemoryError(env, "Map failed");return IOS_THROWN;}return handle(env, -1, "Map failed");}return ((jlong) (unsigned long) mapAddress);}

       我们要找的语句就上面代码中的mapAddress = mmap(0,len,protections,flags,fd,off),至于为什么不是直接的mmap,而是mmap,是因为这里的mmap是一个宏,在文件上方有其定义,如下:

#define mmap mmap

       至此,028棋牌源码我们就在源码中得到验证了我们问题2中的结论:fileChannelImpl.map()底层使用的是mmap系统调用

目的2寻源之旅:mmapedByteBuffer.put(Byte[ ])

       接着我们来看看当我们调用mmapedByteBuffer.put(Byte[])JVM底层在搞些什么动作

       MappedByteBuffer ?首先我们得知道,当我们执行MappedByteBuffer map = fileChannel.map(FileChannel.MapMode.READ_WRITE, 0, _GB)时,实际返回的对象是DirectByteBuffer类的实例,因为MappedByteBuffer为抽象类,且只有DirectByteBuffer继承了它,看下面两图就明白了

       DirectByteBuffer 于是我们找到DirectByteBuffer内的put(Byte[ ])方法

public ByteBuffer put(byte x) { unsafe.putByte(ix(nextPutIndex()), ((x)));return this;}

       可以看到该方法内实际是调用Unsafe类内的putByte方法来实现功能的,所以我们还得去看Unsafe类

       Unsafe.class

public native voidputByte(long address, byte x);

       该方法在Unsafe内是一个native方法,所以所以我们还得去看unsafe.cpp文件内对应的实现

       unsafe.cpp

       在JDK源码中,我们找到unsafe.cpp

       在这份源码内,没有使用JNI内普通加前缀的方法来形成对应关系

       不过我们还是能顺着源码的蛛丝轨迹找到我们要找的方法

       注意到源码中有这样的注册机制,所以我们可以知道我们要找的代码就是上图中标注的代码

       顺藤摸瓜,我们就找到了该方法的定义

UNSAFE_ENTRY(void, Unsafe_SetNative##Type(JNIEnv *env, jobject unsafe, jlong addr, java_type x)) \UnsafeWrapper("Unsafe_SetNative"#Type); \JavaThread* t = JavaThread::current(); \t->set_doing_unsafe_access(true); \void* p = addr_from_java(addr); \*(volatile native_type*)p = x; \t->set_doing_unsafe_access(false); \UNSAFE_END \

       该方法内主要的逻辑语句就是以下两句:

/** * @author Tptogiar * @description * @date /5/ - : */public class TestMappedByteBuffer{ public static final int _4kb = 4*;public static final int _GB= 1**;public static void main(String[] args) throws IOException, InterruptedException { // 为了方便在日志中找到本段代码的开始位置和结束位置,这里利用文件io来打开始标记FileInputStream startInput = null;try { startInput = new FileInputStream("start1.txt");startInput.read();} catch (IOException e) { e.printStackTrace();}File file = new File("filename");FileChannel fileChannel = new RandomAccessFile(file, "rw").getChannel();MappedByteBuffer map = fileChannel.map(FileChannel.MapMode.READ_WRITE, 0, _GB); //我们想分析的语句问题2for (int i = 0; i < _GB; i++) { map.put((byte)0); // 下文中需要分析的语句目的2}// 打结束标记FileInputStream endInput = null;try { endInput = new FileInputStream("end.txt");endInput.read();} catch (IOException e) { e.printStackTrace();}}}0

       至此,我们就知道:其实我们调用mmapedByteBuffer.put(Byte[ ])时,JVM底层并不需要涉及到系统调用(这里也可以用strace工具追踪从而得到验证)。也就是说通过mmap映射的空间在内核空间和用户空间是共享的,我们在用户空间只需要像平时使用用户空间那样就行了————获取地址,设置值,而不涉及用户态,netty源码 视频内核态的切换

总结

       fileChannelImpl.map()底层用调用系统函数mmap

       fileChannelImpl.map()返回的其实不是MappedByteBuffer类对象,而是DirectByteBuffer类对象

       在linux上可以通过strace来追踪系统调用

       JNI中“.class”文件内方法与“.cpp”文件内函数的对应关系不止是前缀对应的方法,还可以是注册的方式,这一点的追寻代码的时候有很大帮助

       directByteBuffer.put()方法底层并没有涉及系统调用,也就不需要涉及切态的性能开销(其底层知识执行获取地址,设置值的操作),所以mmap的性能就比普通读写read/write好

       ...

原文:/post/

从HotSpot源码,深度解读 park 和 unpark

       我最近建立了一个在线自习室(App:番茄ToDO)用于相互监督学习,感兴趣的小伙伴可以加入。自习室加入码:D5A7A

       Java并发包下的类大多基于AQS(AbstractQueuedSynchronizer)框架实现,而AQS线程安全的实现依赖于两个关键类:Unsafe和LockSupport。

       其中,Unsafe主要提供CAS操作(关于CAS,在文章《读懂AtomicInteger源码(多线程专题)》中讲解过),LockSupport主要提供park/unpark操作。实际上,park/unpark操作的最终调用还是基于Unsafe类,因此Unsafe类才是核心。

       Unsafe类的idea读源码实现是由native关键字说明的,这意味着这个方法是原生函数,是用C/C++语言实现的,并被编译成了DLL,由Java去调用。

       park函数的作用是将当前调用线程阻塞,而unpark函数则是唤醒指定线程。

       park是等待一个许可,unpark是为某线程提供一个许可。如果线程A调用park,除非另一个线程调用unpark(A)给A一个许可,否则线程A将阻塞在park操作上。每次调用一次park,需要有一个unpark来解锁。

       并且,unpark可以先于park调用,但不管unpark先调用多少次,都只提供一个许可,不可叠加。只需要一次park来消费掉unpark带来的许可,再次调用会阻塞。

       在Linux系统下,park和unpark是通过Posix线程库pthread中的mutex(互斥量)和condition(条件变量)来实现的。

       简单来说,mutex和condition保护了一个叫_counter的信号量。当park时,这个变量被设置为0,当unpark时,这个变量被设置为1。当_counter=0时线程阻塞,当_counter>0时直接设为0并返回。

       每个Java线程都有一个Parker实例,Parker类的部分源码如下:

       由源码可知,Parker类继承于PlatformParker,实际上是用Posix的mutex和condition来实现的。Parker类里的_counter字段,就是用来记录park和unpark是否需要阻塞的标识。

       具体的执行逻辑已经用注释标记在代码中,简要来说,就是检查_counter是不是大于0,如果是,则把_counter设置为0,返回。如果等于零,继续执行,阻塞等待。

       unpark直接设置_counter为1,再unlock mutex返回。如果_counter之前的值是0,则还要调用pthread_cond_signal唤醒在park中等待的线程。源码如下:

       (如果不会下载JVM源码可以后台回复“jdk”,获得下载压缩包)

Native 关键字详解

       在JDK源码中的Object类中,我们发现了getClass()方法、hashCode()方法、clone()方法,它们的共同点是使用了native关键词进行修饰。这意味着这些方法的实现不是用Java语言编写的,而是用其他语言(如C或C++)实现的。

       那么,为什么要使用native关键词?这样做有什么作用?答案在于JNI(Java Native Interface)。JNI允许Java代码和其他语言编写的代码进行交互,满足以下需求:当Java类库不支持所需平台功能、已用其他语言编写类库需要调用、某些方法使用性能敏感语言(如汇编)实现时。从Java 1.1开始,JNI就作为Java平台的一部分,为解决上述需求提供了支持。

       通过JNI,Java程序可以调用操作系统的相关技术实现的库函数,实现与其他技术和系统的交互,或调用其他技术实现的系统功能。同时,其他技术和系统也可以通过JNI提供的原生接口调用Java应用系统内部实现的功能。

       以Windows系统为例,大部分可执行应用基于native PE结构,而Java虚拟机也是基于native结构实现的。Java应用体系构建于JVM之上,但使用JNI会使得程序不再跨平台,需要在不同系统环境下重新编译本地语言部分。程序的安全性也会降低,不当使用本地代码可能导致整个程序崩溃。尽管存在这些缺点,JNI仍因其性能优势而被广泛使用。

       接下来,我们以HelloWorld程序为例,演示如何使用Java代码调用本地C程序。首先编写带有native声明的Java类,并生成.java文件。然后使用javac命令编译生成.class文件,接着使用javah -jni命令生成.h头文件。接着用C/C++(或其他语言)实现本地方法,生成动态链接库。最后,通过Java程序加载动态库,并实现调用。

       在调用本地C程序的过程中,我们需要确保操作环境配置正确。这包括编译环境(如gcc)的安装和配置,以及确保Java和动态库的路径正确。

       通过以上步骤,我们完成了使用JNI调用本地C程序的过程。这不仅展示了native关键词的使用,还展示了JNI在跨语言调用中的应用。

       综上所述,native关键词允许Java程序调用非Java实现的代码,通过JNI提供与本地语言代码的交互能力。这在满足性能需求、集成外部库或实现平台相关功能时至关重要。

相关栏目:百科