1.SpringBoot整合ShardingSphere-JDBC 5.3.2 实现读写分离、源码分库分表。源码
2.sharding-jdbc分片策略(行分片策略踩坑笔记)
3.理论+实战,源码详解Sharding Sphere-jdbc
4.ShardingJdbc+Mybatis实现多数据源
5.shardingjdbcåtddlçåºå«
6.分库分表ShardingSphere之ShardingJDBC
SpringBoot整合ShardingSphere-JDBC 5.3.2 实现读写分离、源码分库分表。源码
实现读写分离、源码通达信起爆指标源码分库分表的源码技术选型中,ShardingSphere-JDBC 5.3.2 被广泛采用。源码本文将指导读者通过实践部署和配置,源码了解并实施这一技术。源码首先,源码让我们回顾一下读写分离和分库分表的源码基本概念。
读写分离的源码核心思想在于将数据库的读操作(查询)与写操作(插入、更新、源码删除)分别部署在不同的源码服务器上,以提升处理能力和伸缩性,同时减轻单个数据库服务器的负担。通常,大部分的写操作发生在主库,而从库则承担大部分的读操作。在构建高可用系统时,部署多台从库服务器可以进一步提高服务稳定性,避免单点故障。
分库分表策略通过将数据库结构分解,以提高系统性能和扩展性。垂直分表和水平分表是两种主要的分表方式。垂直分表适用于将表中的一部分字段分离,以减小单表的数据量,提高查询效率。水平分表则通过将数据分散在多张表中,实现单表数据量的外包源码维护合理控制,优化查询和更新性能。
ShardingSphere-JDBC 定位于轻量级 Java 框架,旨在提供在 JDBC 层面上的增强服务。它能够根据 SQL 语义自动将读操作和写操作分别路由至主库与从库,而不需要用户额外配置数据库的主从同步。与 ShardingSphere-proxy 相比,ShardingSphere-proxy 在请求数据库前添加一层代理,通过算法分散 SQL 到不同的数据库节点,简化了服务间的配置管理。
本文将通过一个示例项目演示如何在应用中集成 ShardingSphere-JDBC 以实现读写分离。项目结构、pom 文件、application.yml 配置以及 sharding-jdbc.yml 配置文件是实现的关键部分。Controller 测试接口用于验证读写操作的正确性。
配置文件 sharding-jdbc.yml 包含了分库分表的具体规则,例如通过 id 字段进行取模来决定数据路由。这提供了一种基础的分表策略。ShardingSphere-JDBC 还支持更复杂的数据库分片策略,包括基于时间范围、哈希运算、业务字段等规则进行数据分配。
通过详细的代码示例,读者可以理解如何在项目中集成 ShardingSphere-JDBC,并通过测试接口验证实现的效果。分表策略的选择直接影响查询效率和系统性能,合理配置能够显著提升数据库系统的处理能力。
实践完成后,您会发现读写分离和分库分表不仅能够提高系统的负载均衡,还能增强数据安全性和可维护性。这一技术的wap购物源码实践将对提升业务系统的性能和稳定性产生积极影响。
sharding-jdbc分片策略(行分片策略踩坑笔记)
sharding-jdbc行分片策略默认不支持按分片键的范围查询
在开发时,对主键id做了范围查询。结果遇到如下报错:
Errorqueryingdatabase.Cause:java.lang.IllegalStateException:Inlinestrategycannotsupportrangesharding.原因:使用行分片策略原先的sharding-jdbc的分片策略配置是:
sharding:binding-tables:tableNametables:tableName:actual-data-nodes:ds0.tableName_$->{ 0..1}table-strategy:inline:sharding-column:idalgorithm-expression:tableName_$->{ id%2}上面的配置,使用了主键id作为单分片键,行表达式的分片策略。该分片策略只支持=和in操作符,并不支持范围查询。如果你想要使用范围查询,你需要配置开启标准策略。
解决方案:使用标准分片策略对应配置:
sharding:binding-tables:tableNametables:tableName:table-strategy:standard:#用于单分片键的标准分片场景sharding-column:id#分片列名称precise-algorithm-class-name:com.project.com.PreciseModuloAlgorithm#精确分片算法类名称,用于=和IN。。该类需实现PreciseShardingAlgorithm接口并提供无参数的构造器range-algorithm-class-name:com.project.com.component.RangeModuloAlgorithm#范围分片算法类名称,用于BETWEEN,可选。该类需实现RangeShardingAlgorithm接口并提供无参数的构造器问题具体可参考,官方github上的issues提问:/manual/sharding-jdbc/configuration/config-yaml/
对于具体的分片算法类,可参考官方github上的example:/apache/shardingsphere-example
分片算法类需要自己根据实际场景进行开发,这里贴出官方example里的实现类:
publicfinalclassPreciseModuloAlgorithmimplementsPreciseShardingAlgorithm<Integer>{ @OverridepublicStringdoSharding(finalCollection<String>availableTargetNames,finalPreciseShardingValue<Integer>shardingValue){ for(Stringeach:availableTargetNames){ if(each.endsWith(shardingValue.getValue()%+"")){ returneach;}}thrownewUnsupportedOperationException();}}publicfinalclassRangeModuloAlgorithmimplementsRangeShardingAlgorithm<Integer>{ @OverridepublicCollection<String>doSharding(finalCollection<String>availableTargetNames,finalRangeShardingValue<Integer>shardingValue){ Collection<String>result=newLinkedHashSet<>(availableTargetNames.size());intminValue=shardingValue.getValueRange().hasLowerBound()?shardingValue.getValueRange().lowerEndpoint():Integer.MIN_VALUE;intmaxValue=shardingValue.getValueRange().hasUpperBound()?shardingValue.getValueRange().upperEndpoint():Integer.MAX_VALUE;//最大值减最小值,得到差longrange=BigInteger.valueOf(maxValue).subtract(BigInteger.valueOf(minValue)).longValue();//最小值得绝对值除的余数intbegin=Math.abs(minValue)%;//超过9直接返回可用的表名,这里的9是,自己的分片策略值//假设我的分片策略是:对id除以,取余数if(range>9){ returnavailableTargetNames;}//如果差在分片策略内的,就直接取余数,得到对应的表名for(inti=begin;i<=range;i+=1){ for(Stringeach:availableTargetNames){ if(each.endsWith(i+"")){ result.add(each);}}}returnresult;}}sharding-jdbc分片策略分片策略包含分片键和分片算法,由于分片算法的独立性,将其独立抽离。真正可用于分片操作的是分片键+分片算法,也就是分片策略。目前提供5种分片策略。unluac源码解析
标准分片策略对应StandardShardingStrategy。提供对SQL语句中的=,>,<,>=,<=,IN和BETWEENAND的分片操作支持。StandardShardingStrategy只支持单分片键,提供PreciseShardingAlgorithm和RangeShardingAlgorithm两个分片算法。PreciseShardingAlgorithm是必选的,用于处理=和IN的分片。RangeShardingAlgorithm是可选的,用于处理BETWEENAND,>,<,>=,<=分片,如果不配置RangeShardingAlgorithm,SQL中的BETWEENAND将按照全库路由处理。
复合分片策略对应ComplexShardingStrategy。复合分片策略。提供对SQL语句中的=,>,<,>=,<=,IN和BETWEENAND的分片操作支持。ComplexShardingStrategy支持多分片键,由于多分片键之间的关系复杂,因此并未进行过多的封装,而是直接将分片键值组合以及分片操作符透传至分片算法,完全由应用开发者实现,提供最大的灵活度。
行表达式分片策略对应InlineShardingStrategy。使用Groovy的表达式,提供对SQL语句中的=和IN的分片操作支持,只支持单分片键。对于简单的分片算法,可以通过简单的配置使用,从而避免繁琐的Java代码开发,如:t_user_$->{ u_id%8}表示t_user表根据u_id模8,而分成8张表,表名称为t_user_0到t_user_7。
Hint分片策略对应HintShardingStrategy。antd项目源码通过Hint指定分片值而非从SQL中提取分片值的方式进行分片的策略。
不分片策略对应NoneShardingStrategy。不分片的策略。
理论+实战,详解Sharding Sphere-jdbc
Apache ShardingSphere 是一款全面的数据库生态系统,它包含 ShardingSphere-Proxy 和 ShardingSphere-JDBC 两大产品。本文将深入探讨 ShardingSphere-JDBC 的实战应用,分享如何在实际项目中使用它进行数据库分片。 1. ShardingSphere 生态 ShardingSphere 包含两个核心产品:ShardingSphere-Proxy 和 ShardingSphere-JDBC。ShardingSphere-Proxy 作为透明化的数据库代理层,支持异构语言,实现数据库间的转发。而 ShardingSphere-JDBC 是一个轻量级的 Java 框架,它通过增强 JDBC 的功能,实现数据库分片。 2. 基本原理 ShardingSphere-JDBC 的核心在于实现 JDBC 接口,支持分片、路由和 SQL 改写等功能。其工作流程分为解析、优化、路由、改写和执行等步骤,实现 SQL 在多个分片数据库间的高效分发和结果聚合。 解析阶段包括词法和语法解析,提取 SQL 的执行上下文。优化阶段合并和优化分片条件,提高执行效率。路由阶段根据解析上下文匹配分片策略,生成正确的执行路径。改写阶段将 SQL 语句转换为可执行的格式,并进行必要的优化。最后,执行阶段通过多线程并行执行 SQL,结果归并后统一返回。 3. 实战案例 在实际应用中,通过配置分库分表策略,实现数据的高效分片。例如,武汉某 O2O 公司的订单服务,采用分库分表策略,将订单数据拆分为多个库和表,通过配置分片规则和算法,实现数据的平滑分发和查询。 配置分片规则时,需要指定真实数据节点和分片算法。真实数据节点是分片的最小单元,分片算法则决定如何将数据分发到不同的节点。此外,还支持基因法和自定义复合分片算法,以满足更复杂的业务需求。 4. 基因法与自定义复合分片算法 基因法通过在订单 ID 中嵌入企业用户 ID,实现快速定位到特定分片的数据。自定义复合分片算法允许按照多个字段(如订单 ID 和企业用户 ID)进行数据路由,以更精细地控制数据分发。 5. 扩容方案 在实现分库分表后,如何进行平滑扩容是关键问题。通过数据同步方案,包括全量和增量同步,实现数据从旧系统到新系统的平滑迁移。使用 binlog 做数据同步,确保迁移过程中数据的一致性和稳定性。 6. 总结 ShardingSphere-JDBC 通过实现 JDBC 接口,提供了一种简单且易于实现的数据库分片解决方案。在实战中,合理配置数据源、分片规则和算法,可以有效提升数据库性能和扩展性。同时,实现分布式主键路由和平滑扩容,是数据库分片项目中不可或缺的环节。ShardingJdbc+Mybatis实现多数据源
实现Mybatis与多数据源结合的步骤如下:
首先,确保项目依赖正确,这与单数据源项目的依赖设置一致。
接着,配置Mybatis使用数据源的方式。这里采用注解方法,相关的类包括:注解类、枚举类、连接池配置信息类、用于存储数据源变量的ThreadLocal类,以及继承自AbstractRoutingDataSource的切面类和DruidConfig配置类。
在application配置文件中,定义数据源配置信息。
编写测试类,包含Mapper接口和对应的Mapper XML文件。在测试类中,执行不同方法,如list和listSharding。观察结果,list方法直接查询order_info表,而listSharding则从分表中获取数据,这验证了分表策略的正确实现。
整合Mybatis与多数据源的流程适用于实际场景,尤其在使用Mybatis的项目中常见。同时,Mybatisplus的整合也是常见的需求。后续文章将深入探索更多相关整合技术,希望能为读者提供帮助。
项目代码可以参考地址:gitee.com/shen-chuhao/w...
shardingjdbcåtddlçåºå«
shardingjdbcæ¯å½å½ç½çå é¨ååºå表ä¸é´ä»¶ï¼ç®åå·²ç»å¼æºï¼å¯ä»¥å¨githubä¸è¿è¡è·åï¼èTDDLåæ¯é¿éå é¨çååºå表ä¸é´ä»¶ï¼ç®åå°æªå¼æºï¼æ¬è´¨ä¸é½æ¯JDBCçä¸ç§åè£ ã详ç»è§ä¸å¾分库分表ShardingSphere之ShardingJDBC
ShardingSphere的组件中,ShardingJDBC扮演了客户端分库分表的关键角色,它的主要功能是实现数据的智能分布和读写分离。通过集成ShardingJDBC,开发者能够无缝地使用标准的JDBC接口访问那些已经经过分片和读写分离处理的多个数据源,无需过多关注数据源的具体数量或分布策略。
ShardingJDBC的核心概念之一是其分片算法,ShardingSphere提供了五种策略供选择。其中,最常见的策略是基于单个分片键的标准分片,通过配置shardingColumn来指定分片依据。对于更复杂的场景,支持多分片键的复杂分片策略,允许用户指定多个分片列,以适应不同的业务需求。
然而,Hint分片策略并非完全依赖SQL解析,它可以直接绕过解析过程,对于某些复杂查询可能带来更好的性能,但要注意,这种策略在使用时存在严格的限制。Hint强制路由的灵活性可能导致SQL语句支持的脆弱性,即使在ShardingSphere框架的协助下,对SQL的支持仍需要谨慎处理。
shardingsphere源码阅读-兼容jdbc规范
JDBC规范提供一套标准,让不同数据库厂商遵循统一接口操作数据库,从而简化应用程序开发。shardingsphere兼容此规范,通过重写接口实现兼容。
基于JDBC规范,shardingsphere采用适配器模式重写DataSource、Connection、Statement、ResultSet等关键接口,构建了一套完整的实现方案。适配器模式确保了shardingsphere能够以与JDBC规范一致的方式操作数据库,同时支持分库分表功能。
shardingsphere中,JdbcObject接口代表JDBC规范中的核心接口,包括DataSource、Connection、Statement等。通过包装器接口Wrapper以及其子类WrapperAdapter,shardingsphere实现了适配器模式,重写了这些接口的方法,同时保留了与JDBC规范的兼容性。
AbstractUnsupportedOperationJdbcObject和AbstractJdbcObjectAdapter作为抽象类,分别用于实现部分和全部接口方法。ShardingIdbcObject继承自AbstractJdbcObjectAdapter,包括ShardingDataSource、ShardingConnection、ShardingStatement等对象,这些对象都采用适配器模式重写JDBC规范接口,确保与JDBC规范无缝衔接。
以ShardingDataSource为例,其构造过程通过ShardingDataSourceFactory创建ShardingDataSource对象,将数据源、分库分表规则和属性等信息整合,同时初始化运行时上下文和静态代码块加载路由、SQL重写、结果集引擎等组件。ShardingDataSource内部的WrapperAdapter类维护方法调用信息,通过recordMethodInvocation和replayMethodsInvocation方法记录和回放方法调用。
AbstractDataSourceAdapter作为数据源适配器的抽象类,封装公共属性和方法,减少重复代码。此类中的dataSourceMap和databaseType属性分别保存数据源信息和数据库类型,getRuntimeContext方法用于获取分库分表的运行时上下文。
综上所述,shardingsphere通过适配器模式重写JDBC规范接口,实现了与JDBC规范的兼容性。不论使用sharding-jdbc还是原生JDBC,操作数据库的方式和流程保持一致,只是在实现细节上支持了分库分表功能,为开发者提供了一种灵活且高效的数据库管理方案。