1.分享一个Android系统源码在线查看的源码网站
2.Android 源码根目录介绍
3.❤️ Android 源码解读-从setContentView深入了解 Window|Activity|View❤️
4.Android Adb 源码分析(一)
5.大牛们是怎么阅读android系统源码的?
6.简述android源代码的编译过程
分享一个Android系统源码在线查看的网站
欢迎访问在线查看Android系统源码的网站: 该网站支持Android 1.6至.0版本,同时兼容Android Kernel 2.6至6.1版本。源码此外,源码还涵盖了Harmony鸿蒙系统,源码版本从v3.0.8-LTS至v4.1-Release。源码 主界面简洁直观,源码图表源码笔记提供Android、源码Android Kernel以及Harmony的源码源码查看功能。未来,源码网站计划添加更多系统版本。源码 网站提供以下四大特点,源码方便用户高效查看源码: 1. 支持文件跨版本跳转查看,源码用户可轻松在不同版本间切换,源码探索源码演变。源码 2. 支持文件跨版本对比,源码直观显示不同版本之间的变化,方便用户定位差异。 3. 任意界面返回主界面,操作便捷,提升用户体验。 4. 强大的输入提示功能,帮助用户快速找到所需源码,提高查找效率。 总之,该网站是Android系统源码爱好者及开发者不可或缺的在线资源平台。Android 源码根目录介绍
整体目录结构概览
深入解析Android源码根目录的架构,让我们一起了解其组成部分及其作用。
在Android源码根目录中,首先映入眼帘的是“art”目录,其全称是Android Runtime,负责Android系统的运行时环境,是Android应用执行的核心。
紧接着是“bionic”目录,内部包含了基础的库文件,这些库为Android系统的马力源码运行提供底层支持。
“bootable”目录,包含的是Android系统启动时需要的文件和目录,对于系统启动至关重要。
“build”目录,集中了构建Android系统的相关脚本和工具,开发者通过它来构建和测试Android系统。
“dalvik”目录,这里是Dalvik虚拟机的文件存放地,是早期Android系统中负责执行应用代码的主要虚拟机。
“developers”和“development”目录,专为开发者准备,包含了开发工具、文档等资源。
“device”目录,包含了针对不同硬件设备的配置文件和驱动程序,确保Android系统能够适配各种硬件。
“external”目录,存放了第三方库和工具,为Android系统提供额外的功能支持。
“frameworks”目录,包含了Android系统的框架层,为应用提供基础的API和组件。
“hardware”目录,集成了硬件相关的代码和库文件,确保与硬件设备的交互。
“libcore”目录,存储了Android核心库文件,为系统提供关键的基础支持。
“libnativehelper”目录,存放了用于Android应用中调用本地代码的辅助库。
“ndk”目录,全称为Native Development Kit,是为开发本地代码(C/C++)的Android应用准备的。
“packages”目录,onebase源码包含了系统的应用包,包括预装应用和系统服务。
“pdk”目录,全称为Power Development Kit,提供与系统电源管理相关的代码和工具。
“platform_testing”目录,集中了用于测试Android系统的工具和脚本。
“prebuilts”目录,存放了构建工具和库的预编译版本,减少构建过程的时间。
“sdk”目录,包含了Android SDK(Software Development Kit),是开发者构建和测试应用的重要工具。
“system”目录,包含了系统层的应用程序和系统文件,是Android系统运行的基础。
“test”目录,集中了用于验证系统和应用功能的测试代码。
“tools”目录,包含了开发工具和脚本,帮助开发者进行代码调试、构建和分析。
“vendor”目录,存放了设备制造商提供的驱动程序和其他系统文件。
“cts”目录,全称为Compatibility Test Suite,包含了用于验证系统兼容性的测试用例。
最后,不要忘记“out”目录,它是编译过程中产生的临时目录,包含了编译结果。
以上是Android源码根目录的基本介绍,深入了解这些目录及其内容,有助于开发者更高效地进行Android应用的dymola源码开发和调试。
❤️ Android 源码解读-从setContentView深入了解 Window|Activity|View❤️
Android系统中,Window、Activity、View之间的关系是紧密相连且相互作用的。了解这三者之间的关系,有助于深入理解Android应用的渲染和交互机制。
在Android中,通常在创建Activity时会调用`setContentView()`方法,以指定显示的布局资源。这个方法主要作用是将指定的布局添加到一个名为`DecorView`的容器中,并最终将其显示在屏幕上。这一过程涉及到多个组件的交互,下面分步骤解析。
在`Activity`类中,`setContentView()`方法调用`getWindow()`方法获取`Window`对象,而`Window`对象在`Activity`的`attach()`方法中被初始化。`Window`对象是一个抽象类,其默认实现为`PhoneWindow`,这是Android特定的窗口实现。
`PhoneWindow`在创建时会通过`setWindowManager()`方法与`WindowManager`进行关联。`WindowManager`是系统级组件,用于管理所有的窗口,包括窗口的创建、更新、删除等操作。`WindowManager`的管理最终由`WindowManagerService`(WMS)执行,这是一个运行在系统进程中的服务。
在`PhoneWindow`中,`installDecor()`方法会初始化`DecorView`和`mContentParent`。`mContentParent`是一个`ViewGroup`,用于存放`setContentView()`传入的布局。通过`mLayoutInflater`的`inflate()`方法,将指定的布局资源添加到`mContentParent`中。
`DecorView`是itrip源码一个特殊的`FrameLayout`,包含了`mContentParent`。在完成布局的添加后,`DecorView`本身并没有直接与`Activity`建立联系,也没有被绘制到屏幕上显示。`DecorView`的绘制和显示发生在`Activity`的`onResume()`方法执行后,这时`Activity`中的内容才真正可见。
当`Activity`执行到`onCreate()`阶段时,其内容实际上并没有显示在屏幕上,直到执行到`onResume()`阶段,`Activity`的内容才被真正显示。这一过程涉及到`ActivityThread`中的`handleResumeActivity()`方法,该方法会调用`WindowManager`的`addView()`方法,将`DecorView`添加到`WindowManagerService`中,完成`DecorView`的绘制和显示。
`WindowManagerService`通过`addView()`方法将`DecorView`添加到显示队列中,并且在添加过程中,会创建关键的`ViewRootImpl`对象,进一步管理`DecorView`的布局、测量和绘制。`ViewRootImpl`会调用`mWindowSession`的`addToDisplay()`方法,将`DecorView`添加到真正的显示队列中。
`mWindowSession`是`WindowManagerGlobal`中的单例对象,其内部实际上是一个`IWindowSession`类型,通过`AIDL`接口与系统进程中的`Session`对象进行通信,最终实现`DecorView`的添加和显示。
通过`setView()`方法的实现,可以看到除了调用`IWindowSession`进行跨进程添加`View`之外,还会设置输入事件处理。当触屏事件发生时,这些事件首先通过驱动层的优化计算,通过`Socket`跨进程通知`Android Framework`层,最终触屏事件会通过输入管道传送到`DecorView`处理。
在`DecorView`内部,触屏事件会通过`onProcess`方法传递给`mView`,即`PhoneWindow`中的`DecorView`。最终,事件传递到`PhoneWindow`中的`View.java`实现的`dispatchPointerEvent()`方法,并调用`Window.Callback`的`dispatchTouchEvent(ev)`方法。对于`Activity`来说,`dispatchTouchEvent()`方法最终还是会调用`PhoneWindow`的`superDispatchTouchEvent()`,然后传递给`DecorView`的`superDispatchTouchEvent()`方法,完成事件的分发和处理。
综上所述,通过`setContentView()`的过程,我们可以清晰地看到`Activity`、`Window`、`View`之间的交互关系。整个过程主要由`PhoneWindow`组件主导,而`Activity`主要负责提供要显示的布局资源,其与屏幕的直接交互则通过`WindowManager`和`WindowManagerService`实现。
Android Adb 源码分析(一)
面对Android项目的调试困境,我们的团队在项目临近量产阶段,将userdebug版本切换为了user版本,并对selinux权限进行了调整。然而,这一转变却带来了大量的bug,日志文件在/data/logs/目录下,因为权限问题无法正常pull出来,导致问题定位变得异常困难。面对这一挑战,我们尝试了两种解决方案。
首先,我们尝试修改data目录的权限,使之成为system用户,以期绕过权限限制,然而数据目录下的logs文件仍保留了root权限,因此获取日志依然需要root权限,这并未解决问题。随后,我们找到了一个相对安全的解决办法——通过adb命令的后门机制,将获取root权限的命令修改为adb aaa.bbb.ccc.root。这一做法在一定程度上增加了后门的隐蔽性,避免了被窃取,同时对日常开发的影响也降至最低。
在解决这一问题的过程中,我们对Android ADB的相关知识有了更深入的理解。ADB是Android系统中用于调试的工具,它主要由三部分构成:adb client、adb service和adb daemon。其中,adb client运行于主机端,提供了命令接口;adb service作为一个后台进程,位于主机端;adb daemon则是运行于设备端(实际机器或模拟器)的守护进程。这三个组件共同构成了ADB工具的完整框架,且它们的代码主要来源于system/core/adb目录,用户可以在此目录下找到adb及adbd的源代码。
为了实现解决方案二,我们对adb的代码进行了修改,并通过Android SDK进行编译。具体步骤包括在Windows环境下编译生成adb.exe,以及在设备端编译adbd服务。需要注意的是,在进行编译前,需要先建立Android的编译环境。经过对ADB各部分关系及源代码结构的梳理,我们对ADB有了更深入的理解。
在后续的开发过程中,我们将继续深入研究ADB代码,尤其是关于如何实现root权限的功能。如果大家觉得我们的分享有价值,欢迎关注我们的微信公众号“嵌入式Linux”,一起探索更多关于Android调试的技巧与知识。
大牛们是怎么阅读android系统源码的?
深入阅读Android系统源码是大牛们提升技术实力的重要途径。作为开发者,若需大量修改framework代码并深入理解Android系统,AOSP(Android Open Source Project)源码成为学习和实践的首选。
对于仅需浏览常用类实现的开发者,下载源码到Android包管理器中并配置IDE的Source Code路径即可开始阅读。然而,若要深入了解Android系统架构与实现细节,需采取更系统的方法。
阅读源码初期,应聚焦于核心模块,如System Server、Libraries、Services等,了解它们的组织结构和功能。以学习者身份,需关注类与接口的定义,理解其内部实现逻辑与调用关系。深入研究不同组件之间的交互,有助于构建对Android系统整体架构的认知。
学习过程中,结合官方文档、社区教程与讨论,可以提高理解效率。实践是检验学习成果的最好方式,尝试在实际项目中应用所学知识,将理论与实践相结合,能显著提升技术能力。
对于有经验的开发者,深入研究内核模块如Binder、IPC机制、Linux内核集成等,将有助于掌握Android系统的底层工作原理。同时,关注源码中的注释和日志,可以洞察开发者的思路与设计考虑,对于理解复杂实现细节非常有帮助。
持续跟进Android系统的版本更新,理解新增特性和改动,有助于保持技术的敏锐度。加入开发者社区,与同行交流学习心得与问题解决方法,能加速学习过程,同时拓宽技术视野。
综上所述,阅读Android系统源码并非一蹴而就的过程,需要耐心、实践与持续学习。通过系统学习与实践,开发者可以逐步深入理解Android系统,提升技术能力,为自己的职业生涯带来显著提升。
简述android源代码的编译过程
编译Android源代码是一个相对复杂的过程,涉及多个步骤和工具。下面我将首先简要概括编译过程,然后详细解释每个步骤。
简要
Android源代码的编译过程主要包括获取源代码、设置编译环境、选择编译目标、开始编译以及处理编译结果等步骤。
1. 获取源代码:编译Android源代码的第一步是从官方渠道获取源代码。通常,这可以通过使用Git工具从Android Open Source Project(AOSP)的官方仓库克隆代码来完成。命令示例:`git clone /platform/manifest`。
2. 设置编译环境:在编译之前,需要配置合适的编译环境。这通常涉及安装特定的操作系统(如Ubuntu的某些版本),安装必要的依赖项(如Java开发工具包和Android Debug Bridge),以及配置特定的环境变量等。
3. 选择编译目标:Android支持多种设备和配置,因此编译时需要指定目标。这可以通过选择特定的设备配置文件(如针对Pixel手机的`aosp_arm-eng`)或使用通用配置来完成。选择目标后,编译系统将知道需要构建哪些组件和变种。
4. 开始编译:设置好环境并选择了编译目标后,就可以开始编译过程了。在源代码的根目录下,可以使用命令`make -jN`来启动编译,其中`N`通常设置为系统核心数的1~2倍,以并行处理编译任务,加快编译速度。编译过程中,系统将根据Makefile文件和其他构建脚本,自动下载所需的预构建二进制文件,并编译源代码。
5. 处理编译结果:编译完成后,将在输出目录(通常是`out/`目录)中生成编译结果。这包括可用于模拟器的系统镜像、可用于实际设备的OTA包或完整的系统镜像等。根据需要,可以进一步处理这些输出文件,如打包、签名等。
在整个编译过程中,还可能遇到各种依赖问题和编译错误,需要根据错误信息进行调试和解决。由于Android源代码庞大且复杂,完整的编译可能需要数小时甚至更长时间,因此耐心和合适的硬件配置也是成功编译的重要因素。
2024-12-28 20:01
2024-12-28 19:57
2024-12-28 19:20
2024-12-28 18:01
2024-12-28 17:55
2024-12-28 17:33