【通达信趋势线加粗源码】【斗牌app源码】【新版ssc源码】ansible 2 源码

1.如何使用Ansible 2的API做python开发
2.15 位新兴开源项目背后的明星创始人
3.哪里能够买到商用的django项目源码(2023年最新整理)
4.自动化运维初级村Paramiko vs Netmiko
5.如何编译打包OpenSSH 9.4并实现批量升级
6.ansible 使用密码登录

ansible 2 源码

如何使用Ansible 2的API做python开发

       Ansible 和 SaltStack 都提供了 Python 直接调用的API, 这方便了 Pythoner 对这些软件进行二次开发和整合, 此功能着实方便了不少, 比起 Python 代码中调用 shell 也略显专业!

       ç„¶è€Œ Ansible 在2.0版本后重构了大部分的代码逻辑, 启用了2.0版本之前的 Runner 和 Playbook ç±», 使得广大同学之前的代码运行错误. 择日不如撞日, 今天中午对照 官方的文档 , 结合源代码, 对2.0版本之后的 Python API 做了下探究

       Adhoc

       adhoc 其实就是执行 Ansible 模块, 通过 adhoc 我们可以方便快捷的完成一些临时的运维操作.

       2.0 之前的调用

       import ansible.runner

       import json

       runner = ansible.runner.Runner(

        module_name='ping', # 模块名

        module_args='', # 模块参数

        pattern='all', # 目标机器的pattern

        forks=

        )

       datastructure = runner.run()

       data = json.dumps(datastructure,indent=4)

       å½“然这里会去加载默认的 inventory

       å¦‚果不想使用 inventory 文件或者想使用动态的 inventory, 则可以使用 host_list 参数代替

       import ansible.runner

       import json

       runner = ansible.runner.Runner(

        host_list=["..0.1"], # 这里如果明确指定主机需要传递一个列表, 或者指定动态inventory脚本

        module_name='ping', # 模块名

        module_args='', # 模块参数

        extra_vars={ "ansible_ssh_user":"root","ansible_ssh_pass":"xx"},

        forks=

        )

       datastructure = runner.run()

       data = json.dumps(datastructure,indent=4)

       2.0 之后的调用

       import json

       from ansible.parsing.dataloader import DataLoader

       from ansible.vars import VariableManager

       from ansible.inventory import Inventory

       from ansible.playbook.play import Play

       from ansible.executor.task_queue_manager import TaskQueueManager

       from ansible.executor.playbook_executor import PlaybookExecutor

       loader = DataLoader() # 用来加载解析yaml文件或JSON内容,并且支持vault的解密

       variable_manager = VariableManager() # 管理变量的类,包括主机,组,扩展等变量,之前版本是在 inventory 中的

       inventory = Inventory(loader=loader, variable_manager=variable_manager)

       variable_manager.set_inventory(inventory) # 根据 inventory 加载对应变量

       class Options(object):

        '''

        这是一个公共的类,因为ad-hoc和playbook都需要一个options参数

        并且所需要拥有不同的属性,但是大部分属性都可以返回None或False

        因此用这样的一个类来省去初始化大一堆的空值的属性

        '''

        def __init__(self):

        self.connection = "local"

        self.forks = 1

        self.check = False

        def __getattr__(self, name):

        return None

       options = Options()

       def run_adhoc():

        variable_manager.extra_vars={ "ansible_ssh_user":"root" , "ansible_ssh_pass":"xxx"} # 增加外部变量

        # 构建pb, 这里很有意思, 新版本运行ad-hoc或playbook都需要构建这样的pb, 只是最后调用play的类不一样

        # :param name: 任务名,类似playbook中tasks中的name

        # :param hosts: playbook中的hosts

        # :param tasks: playbook中的tasks, 其实这就是playbook的语法, 因为tasks的值是个列表,因此可以写入多个task

        play_source = { "name":"Ansible Ad-Hoc","hosts":"..0.1","gather_facts":"no","tasks":[{ "action":{ "module":"shell","args":"w"}}]}

        play = Play().load(play_source, variable_manager=variable_manager, loader=loader)

        tqm = None

        try:

        tqm = TaskQueueManager(

        inventory=inventory,

        variable_manager=variable_manager,

        loader=loader,

        options=options,

        passwords=None,

        stdout_callback='minimal',

        run_tree=False,

        )

        result = tqm.run(play)

        print result

        finally:

        if tqm is not None:

        tqm.cleanup()

       if __name__ == '__main__':

        run_adhoc()

       Playbook

       playbook 则类似于 SaltStack 中的 state

       2.0 之前的调用

       from ansible import callbacks

       from ansible import utils

       from ansible.playbook import PlayBook

       stats = callbacks.AggregateStats()

       callback = callbacks.PlaybookCallbacks()

       runner_callbacks = callbacks.PlaybookRunnerCallbacks(stats)

       pb = ansible.playbook.PlayBook(

        playbook="tasks.yml",

        stats=stats,

        callbacks=playbook_cb,

        runner_callbacks=runner_cb,

        check=True

       )

       pb.run()

       2.0 之后的调用

       import json

       from ansible.parsing.dataloader import DataLoader

       from ansible.vars import VariableManager

       from ansible.inventory import Inventory

       from ansible.playbook.play import Play

       from ansible.executor.task_queue_manager import TaskQueueManager

       from ansible.executor.playbook_executor import PlaybookExecutor

       loader = DataLoader() # 用来加载解析yaml文件或JSON内容,并且支持vault的解密

       variable_manager = VariableManager() # 管理变量的类,包括主机,组,扩展等变量,之前版本是在 inventory 中的

       inventory = Inventory(loader=loader, variable_manager=variable_manager)

       variable_manager.set_inventory(inventory) # 根据 inventory 加载对应变量

       class Options(object):

        '''

        这是一个公共的类,因为ad-hoc和playbook都需要一个options参数

        并且所需要拥有不同的属性,但是大部分属性都可以返回None或False

        因此用这样的一个类来省去初始化大一堆的空值的属性

        '''

        def __init__(self):

        self.connection = "local"

        self.forks = 1

        self.check = False

        def __getattr__(self, name):

        return None

       options = Options()

       def run_playbook():

        playbooks=['task.yaml'] # 这里是一个列表, 因此可以运行多个playbook

        variable_manager.extra_vars={ "ansible_ssh_user":"root" , "ansible_ssh_pass":"xxx"} # 增加外部变量

        pb = PlaybookExecutor(playbooks=playbooks, inventory=inventory, variable_manager=variable_manager, loader=loader, options=options, passwords=None)

        result = pb.run()

        print result

       if __name__ == '__main__':

        run_playbook()

位新兴开源项目背后的明星创始人

       InfoWorld整理了一份“ star founders of high-flying open source projects”名单,旨在揭示当今最重要和最具创新性的开源项目背后的驱动力。随着开源的演变,它已获得企业界的接纳,改变了企业和开源社区的格局。现今,通达信趋势线加粗源码最具影响力的开源项目多源于大公司的合作,但仍对整个社区产生积极影响。创造者在提高知名度的同时,也从他们的作品中获益。

       A new generation

       早期的开源运动由Linus Torvalds引领,他以学生身份创建Linux,最终成为Linux内核社区的主导人物。然而,开源环境已发生变化,开源项目如今更常在大公司内部合作中诞生。尽管如此,它们依然保持开源特性,为整个社区提供支持,创造者也从中受益。

       以下是一些关键开源项目背后的创新者:

       Apache Kafka:Jay Kreps、Neha Narkhede、Jun Rao

       Kafka数据流解决方案的诞生,是为了解决公司处理和传输数据的挑战,LinkedIn是最早遭遇此问题的公司之一。Jay Kreps、Neha Narkhede和Jun Rao三位工程师在LinkedIn工作时,参与了一个消息系统项目,最终发展为Kafka。Kafka的开放源代码发布后,迅速成为多个公司和项目的重要组成部分,并催生了Confluent公司。

       Redis:Salvatore Sanfilippo

       Redis高性能key-value数据库的出现,弥补了memcached等数据存储的不足,成为关系数据库的有力补充。Salfilippo推出Redis后,将其开源,项目迅速发展。随后,他被VMware聘请,继续参与Redis项目。

       Kubernetes:Joe Beda、Brendan Burns、Craig McLuckie

       Kubernetes作为容器编排系统,已成为大小公司的关键基础设施。它起源于谷歌内部,斗牌app源码由Joe Beda、Brendan Burns和Craig McLuckie共同创建,基于谷歌早期的Borg集群管理器概念。Kubernetes最初被称为“Project 7”,以《星际迷航:航海家》中的Borg角色七号命名。

       Apache Spark:Matei Zaharia

       Apache Spark,数据处理平台,取代了MapReduce,成为大数据领域的佼佼者。Spark诞生于学术界,由Matei Zaharia在加州大学伯克利分校获得博士学位时奠定基础。几乎从诞生之初,Spark就是开源的。

       Ansible:Michael DeHaan

       Ansible自动化平台的关键部分,也是基础设施即代码运动的重要工具。基于YAML的Ansible Playbook定义服务器配置,通过SSH自动部署至目标系统。Michael DeHaan是Ansible的创造者,其职业生涯展示了开源项目和创造者可能遵循的路径。他后来围绕Ansible建立公司,并被其老东家红帽收购。

       Node.js和Deno:Ryan Dahl

       Node.js和Dahl遵循了开源轨迹,项目质量达到临界点后,项目和创造者转移到可以孵化其的营利性公司。几年后,Dahl离开,Node.js被转移到基金会。随后,Dahl提出Deno,一个更安全、更高效的JavaScript运行时,旨在改进Node.js。Deno发展迅速,Dahl成立新公司作为其总部。

       CockroachDB:Spencer Kimball、Peter Mattis、Ben Darnell

       Spencer Kimball和Peter Mattis在加州大学伯克利分校共同开发GNU Image Manipulation Program和GTK,这两个基础软件促进了开源的可行性。在硅谷企业中度过一段时间后,他们与Ben Darnell联手推出CockroachDB,一个基于分布式架构的SQL数据库。CockroachDB借鉴了Kimball、Mattis和Darnell早期的谷歌经验,与Google Cloud Spanner竞争,作为开源项目,新版ssc源码它对任何人免费提供。

       Django:Simon Willison、Adrian Holovaty

       Simon Willison和Adrian Holovaty在为Lawrence Journal-World工作时,设计了基于Python的网络应用程序框架Django,以快速创建复杂数据库驱动的网络应用。Django在Python Web开发领域大受欢迎,至今仍具有重要地位。虽然Willison和Holovaty的名声不如名单上的其他人物,但他们拥有有趣且富有成效的职业生涯。Holovaty为华盛顿邮报等出版物的科技新闻项目工作,而Willison与妻子合作开发活动平台,被Eventbrite收购。

       “如名单上的其他人一样,许多创造者从他们的开源工作获益,这无疑使他们感到满足。”

哪里能够买到商用的django项目源码(年最新整理)

       导读:很多朋友问到关于哪里能够买到商用的django项目源码的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

我在Fedora下初学django遇到问题。大牛们来看看吧,帮帮我

       你是linux系统我也遇到过

       你可以下载一个django的源码包

       django/bin/django-admin.py其实你找的就是源码包里面的这个文件然后创建就可以了

       至于删除不了应该是权限不够你终端下sudorm-rf文件夹就可以了用的时候小心点删除就找不回来了

       Django框架是什么?

       Django是基于Python的免费和开放源代码Web框架,它遵循模型-模板-视图(MTV)体系结构模式。它由DjangoSoftwareFoundation(DSF)维护,这是一个由非营利组织成立的独立组织。

       Django的主要目标是简化复杂的,数据库驱动的网站的创建。该框架强调组件的可重用性和“可插入性”,更少的代码,低耦合,快速开发以及不重复自己的原则。整个过程都使用Python,甚至用于设置文件和数据模型。Django还提供了一个可选的管理创建,读取,更新和删除界面,该界面通过自省动态生成并通过管理模型进行配置。

       一些使用Django的知名网站包括公共广播服务,Instagram,Mozilla,华盛顿时报,Disqus,Bitbucket,和Nextdoor。arla溯源码

       Django创建于年秋天,当时《劳伦斯日报》世界报纸的网络程序员AdrianHolovaty和SimonWillison开始使用Python来构建应用程序。西蒙·威利森(SimonWillison)的实习期结束前不久,雅各布·卡普兰·莫斯(JacobKaplan-Moss)在Django的发展中就被聘用了。它于年7月在BSD许可下公开发布。该框架以吉他手DjangoReinhardt的名字命名。年6月,宣布新成立的Django软件基金会(DSF)将来将维护Django。

       年7月,与一些Django联合创始人和开发人员建立联系的软件咨询公司RevolutionSystems在劳伦斯举办了周年纪念活动。

       Django的设计理念如下:

       松耦合——Django的目标是使堆栈中的每个元素彼此独立。

       更少的编码——更少的代码,因此可以快速开发。

       不重复自己(DRY)——一切都应该只在一个地方开发,而不是一次又一次地重复。

       快速开发——Django的理念是尽一切可能促进超快速开发。

       简洁的设计——Django严格按照自己的代码维护简洁的设计,并易于遵循最佳的Web开发实践。

       Django的一些优势如下:

       对象关系映射(ORM)支持——Django在数据模型和数据库引擎之间建立了桥梁,并支持包括MySQL,Oracle,Postgres等在内的大量数据库系统。

       多语言支持——Django通过其内置的国际化系统支持多语言网站。因此,您可以开发支持多种语言的网站。

       框架支持——Django内置了对Ajax,RSS,缓存和其他各种框架的支持。

       GUI——Django为管理活动提供了一个很好的即用型用户界面。

       开发环境——Django带有轻量级的Web服务器,以促进端到端应用程序的开发和测试。

       Django是PythonWeb框架。和大多数现代框架一样,Django支持MVC模式。

       关于Python的基础问题可以看下这个网页的视频教程,网页链接,希望我的回答能帮到你。

Django源码阅读(一)项目的生成与启动

       诚实的说,直到目前为止,我并不欣赏django。在我的认知它并不是多么精巧的设计。只是由功能堆积起来的"成熟方案"。但每一样东西的崛起都是时代的选择。无论你多么不喜欢,但它被需要。粉象源码希望有一天,python能有更多更丰富的成熟方案,且不再被诟病性能和可维护性。(屁话结束)

       取其精华去其糟粕,django的优点是方便,我们这次源码阅读的目的是探究其方便的本质。计划上本次源码阅读不会精细到每一处,而是大体以功能为单位进行解读。

       django-adminstartprojectHelloWorld即可生成django项目,命令行是exe格式的。

       manage.py把参数交给命令行解析。

       execute_from_command_line()通过命令行参数,创建一个管理类。然后运行他的execute()。

       如果设置了reload,将会在启动前先check_errors。

       check_errors()是个闭包,所以上文结尾是(django.setup)()。

       直接看最后一句settings.INSTALLED_APPS。从settings中抓取app

       注意,这个settings还不是我们项目中的settings.py。而是一个对象,位于django\conf\__init__.py

       这是个Settings类的懒加载封装类,直到__getattr__取值时才开始初始化。然后从Settings类的实例中取值。且会讲该值赋值到自己的__dict__上(下次会直接在自己身上找到,因为__getattr__优先级较低)

       为了方便debug,我们直接写个run.py。不用命令行的方式。

       项目下建个run.py,模拟runserver命令

       debug抓一下setting_module

       回到setup()中的最后一句apps.populate(settings.INSTALLED_APPS)

       开始看apps.populate()

       首先看这段

       这些App最后都会封装成为AppConfig。且会装载到self.app_configs字典中

       随后,分别调用每个appConfig的import_models()和ready()方法。

       App的装载部分大体如此

       为了方便debug我们改写下最后一句

       res的类型是Commanddjango.contrib.staticfiles.management.commands.runserver.Commandobjectat0xEDA0

       重点是第二句,让我们跳到run_from_argv()方法,这里对参数进行了若干处理。

       用pycharm点这里的handle会进入基类的方法,无法得到正确的走向。实际上子类Commond重写了这个方法。

       这里分为两种情况,如果是reload重载时,会直接执行inner_run(),而项目启动需要先执行其他逻辑。

       django项目启动时,实际上会启动两次,如果我们在项目入口(manage.py)中设置个print,会发现它会打印两次。

       第一次启动时,DJANGO_AUTORELOAD_ENV为None,无法进入启动逻辑。会进入restart_with_reloader()。

       在这里会将DJANGO_AUTORELOAD_ENV置为True,随后重启。

       第二次时,可以进入启动逻辑了。

       这里创建了一个django主线程,将inner_run()传入。

       随后本线程通过reloader.run(django_main_thread),创建一个轮询守护进程。

       我们接下来看django的主线程inner_run()。

       当我们看到wsgi时,django负责的启动逻辑,就此结束了。接下来的工作交由wsgi服务器了

       这相当于我们之前在fastapi中说到的,将fastapi的app交由asgi服务器。(asgi也是django提出来的,两者本质同源)

       那么这个wsgi是从哪来的?让我们来稍微回溯下

       这个settings是一个对象,在之前的操作中已经从settings.py配置文件中获得了自身的属性。所以我们只需要去settings.py配置文件中寻找。

       我们来寻找这个get_wsgi_application()。

       它会再次调用setup(),重要的是,返回一个WSGIHandler类的实例。

       这就是wsgiapp本身。

       load_middleware()为构建中间件堆栈,这也是wsgiapp获取setting信息的唯一途径。导入settings.py,生成中间件堆栈。

       如果看过我之前那篇fastapi源码的,应该对中间件堆栈不陌生。

       app入口→中间件堆栈→路由→路由节点→endpoint

       所以,wsgiapp就此构建完毕,服务器传入请求至app入口,即可经过中间件到达路由进行分发。

去哪里找python的开源项目

       GitHub是一个面向开源及私有软件项目的托管平台,因为只支持git作为唯一的版本库格式进行托管,故名GitHub。作为开源代码库以及版本控制系统,Github拥有超过万开发者用户。随着越来越多的应用程序转移到了云上,Github已经成为了管理软件开发以及发现已有代码的首选方法。在GitHub,用户可以十分轻易地找到海量的开源代码。

       下面给大家介绍一些GitHub上个开源项目:

       (1)TensorFlowModels

       如果你对机器学习和深度学习感兴趣,一定听说过TensorFlow。TensorFlowModels是一个开源存储库,可以找到许多与深度学习相关的库和模型。

       (GitHub:)

       (2)Keras

       Keras是一个高级神经网络API,用Python编写,能够在TensorFlow,CNTK或Theano之上运行。旨在完成深度学习的快速开发(GitHub:)

       (3)Flask

       Flask是一个微型的Python开发的Web框架,基于Werkzeug?WSGI工具箱和Jinja2模板引擎,使用BSD授权。

       (GitHub:)

       (4)scikit-learn

       scikit-learn是一个用于机器学习的Python模块,基于NumPy、SciPy和matplotlib构建。,并遵循BSD许可协议。

       (GitHub:)

       (5)Zulip

       Zulip是一款功能强大的开源群聊应用程序,它结合了实时聊天的即时性和线程对话的生产力优势。Zulip作为一个开源项目,被许多世界强企业,大型组织以及其他需要实时聊天系统的用户选择使用,该系统允许用户每天轻松处理数百或数千条消息。Zulip拥有超过名贡献者,每月合并超过次提交,也是规模最大,发展最快的开源群聊项目。

       (GitHub:)

       :《Python入门教程》

       (6)Django

       Django是Python编程语言驱动的一个开源模型-视图-控制器(MVC)风格的Web应用程序框架,旨在快速开发出清晰,实用的设计。使用Django,我们在几分钟之内就可以创建高品质、易维护、数据库驱动的应用程序。

       (GitHub:)

       (7)Rebound

       Rebound是一个当你得到编译错误时即时获取StackOverflow结果的命令行工具。就用rebound命令执行你的文件。这对程序员来说方便了不少。

       (GitHub:)

       (8)GoogleImagesDownload

       这是一个命令行python程序,用于搜索GoogleImages上的关键字/关键短语,并可选择将图像下载到您的计算机。你也可以从另一个python文件调用此脚本。

       (GitHub:)

       (9)YouTube-dl

       youtube-dl是基于Python的命令行媒体文件下载工具,完全开源免费跨平台。用户只需使用简单命令并提供在线视频的网页地址即可让程序自动进行嗅探、下载、合并、命名和清理,最终得到已经命名的完整视频文件。

       (GitHub:/rg3/youtube-dl)

       ()SystemDesignPrimer

       此repo是一个系统的资源集合,可帮助你了解如何大规模构建系统。

       (GitHub:)

       ()MaskR-CNN

       MaskR-CNN用于对象检测和分割。这是对Python3,Keras和TensorFlow的MaskR-CNN实现。该模型为图像中对象的每个实例生成边界框和分割蒙版。它基于特FeaturePyramidNetwork(FPN)和ResNetbackbone。

       (GitHub:)

       ()FaceRecognition

       FaceRecognition是一个基于Python的人脸识别库,使用十分简便。这还提供了一个简单的face_recognition命令行工具,可以让您从命令行对图像文件夹进行人脸识别!

       (GitHub:)

       ()snallygaster

       用于扫描HTTP服务器上的机密文件的工具。

       (GitHub:)

       ()Ansible

       Ansible是一个极其简单的IT自动化系统。它可用于配置管理,应用程序部署,云配置,支持远程任务执行和多节点发布-包括通过负载平衡器轻松实现零停机滚动更新等操作。

       (GitHub:)

       ()Detectron

       Detectron是FacebookAI研究院开源的的软件系统,它实现了最先进的目标检测算法,包括MaskR-CNN。它是用Python编写的,由Caffe2深度学习框架提供支持。

       ()asciinema

       终端会话记录器和asciinema.org的最佳搭档。

       (GitHub:)

       ()HTTPie

       HTTPie是一个开源的命令行的HTTP工具包,其目标是使与Web服务的CLI交互尽可能人性化。它提供了一个简单的/releasenote...。

       openssh.com/releasenote...链接

       步骤1: 定制编译脚本

        使用开源脚本进行自动化编译,以简化OpenSSH源码的构建过程。

        Github链接请参考github.com/boypt/openss...。请注意,对于编译过程中的依赖安装,建议使用虚拟机环境以避免与系统环境冲突。

        从pullsrc.sh脚本中,添加--no-check-certificate参数至wget命令,以解决源代码下载时的证书问题。同时,针对CentOS7环境,对el7目录下的SPECS/openssh.spec文件进行修改以确保编译中包含ssh-copy-id命令。

       步骤2: 准备编译环境

        确保所有开发工具和环境(如GCC、make等)已经安装在虚拟机中。对于没有网络的服务器,可以通过外部链接提供源码包并传入download目录。

        使用编译脚本进行自动化编译和打包过程,并检查编译是否成功,以及rpm包是否完整。

       步骤3: 批量升级服务器SSH版本

        利用Ansible自动化工具在多台服务器上执行脚本,以实现批量升级。

        第一步,在执行脚本前,确保Ansible服务已安装在用以执行脚本的服务器上。

        解压脚本文件,查看核心文件。脚本会包含一个playbook用于批量管理与配置服务器。

       自定义待升级服务器信息,例如,可以将一组服务器的IP、用户名及密码列表分类存储至不同主机组,适用于相同的登录凭证或用于区分不同登录凭证的多组服务器。

        执行自定义脚本,启动升级过程。随后,通过SSH服务验证OpenSSH是否已成功升级到9.4版本,并检查与服务器的登录是否正常。

       为了提供具体代码和操作流程的指导,建议参考这些链接提供的资源,并确保在执行操作前了解和遵循各自的安全策略与最佳实践,包括权限管理、依赖安装与配置等方面的细节。

ansible 使用密码登录

        安装ansible

        1.安装sshpass

        apt :

        源码:

        创建一个hosts文件,添加用户密码,认证ssh连接

        2.错误汇总:

        ansible -i hosts test -m ping

        3.原因和解决办法:

        ssh第一次连接的时候一般会提示输入yes 进行确认为将key字符串加入到 ~/.ssh/known_hosts 文件中。而本机的~/.ssh/known_hosts文件中并有fingerprint key串

        解决方法:在ansible.cfg文件中更改下面的参数:

        执行shell 命令

jenkins菜鸟教程

         Jenkins是一个开源的自动化构建工具,用于自动化构建、测试和发布软件。它是一个基于Java的Web应用程序,可以在Windows、Linux和Mac OS X等多个操作系统上运行。Jenkins提供了基于插件的架构,可以轻松地扩展其功能。

         

       Jenkins的主要功能包括:

       1。自动化构建:Jenkins可以从源代码库中获取代码,并自动执行构建过程。它可以编译代码、运行测试和生成可执行文件。

       2。自动化测试:Jenkins可以自动运行测试套件,并生成测试报告。

         它支持各种测试框架,包括JUnit、TestNG和Selenium等。

       3。自动化部署:Jenkins可以将构建好的软件包部署到目标服务器上。它支持各种部署工具,包括Ansible、Docker和Kubernetes等。

       4。

         插件扩展:Jenkins提供了丰富的插件,可以扩展其功能。用户可以根据自己的需要安装插件,例如静态代码分析、代码覆盖率测试和集成测试等。

       5。可视化界面:Jenkins提供了友好的Web界面,可以方便地查看构建历史、测试结果和部署状态等。

         

       使用Jenkins的好处包括:

       1。提高软件质量:Jenkins可以自动运行测试并生成测试报告,帮助开发人员发现和修复问题。

       2。加速软件发布:Jenkins可以自动化构建和部署软件,从而加快软件发布的速度。

         

       3。节省时间和成本:Jenkins可以自动化重复性的工作,节省开发和测试人员的时间和成本。

       4。提高团队协作:Jenkins提供了丰富的插件和可视化界面,可以方便地进行团队协作。

       总之,Jenkins是一个非常强大的自动化构建工具,可以帮助软件开发团队提高工作效率和软件质量。

         如果您是一个开发人员或测试人员,建议您学习和使用Jenkins。

更多内容请点击【娱乐】专栏

精彩资讯