【赚钱大师系统 源码下载】【iptables源码】【putty源码】openharmony 源码
1.OpenHarmony系统解决方案 - 配置屏幕方向导致开机动画和Launcher显示异常
2.OpenHarmony源码解析之电话子系统——通话流程
3.OpenHarmony 3GPP协议开发深度剖析——一文读懂RIL
4.OpenHarmony—内核对象事件之源码详解
5.OpenHarmony代码下载编译及源码跳转配置
6.鸿蒙轻内核M核源码分析:中断Hwi
OpenHarmony系统解决方案 - 配置屏幕方向导致开机动画和Launcher显示异常
系统版本:OpenHarmony-3.2-Release 遇到的问题是配置屏幕方向导致开机动画和Launcher显示异常。 问题现象出现在源码文件foundation/window/window_manager/resources/config/rk/display_manager_config.xml和系统文件/etc/window/resources/display_manager_config.xml中。 异常效果是:正常效果下,系统运行平稳,无异常表现。 问题的赚钱大师系统 源码下载原因在于ScreenRotationController初始化时序的不当,使ScreenRotationController在Launcher加载Window时未触发。 解决办法是调整ScreenRotationController的初始化时序,确保在Launcher加载Window时触发。通过修改源码文件foundation/window/window_manager/wmserver/src/window_node_container.cpp,对WindowNodeContainer::RemoveWindowNode和WindowNodeContainer::AddWindowNode函数进行代码修改。 在定位问题的过程中,我们了解到若应用方向需要随系统切换,可在module.json5的ability中配置orientation为auto_rotation_restricted。 为帮助大家更好地学习鸿蒙 (OpenHarmony) 开发技术,特别整理了《鸿蒙 (OpenHarmony)开发学习手册》(共计页),旨在提供深入学习资源。 以下为手册的入门指南:《鸿蒙 (OpenHarmony)开发学习手册》入门必看:qr.cn/FV7h
HarmonyOS 概念:qr.cn/FV7h
如何快速入门?:qr.cn/FV7h
开发基础知识:qr.cn/FV7h
基于ArkTS 开发:qr.cn/FV7h
手册覆盖了以下鸿蒙 (OpenHarmony) 开发领域:Ability开发
UI开发
公共事件与通知
窗口管理
媒体
安全
网络与链接
电话服务
数据管理
后台任务(Background Task)管理
设备管理
设备使用信息统计
DFX
国际化开发
折叠屏系列
……
OpenHarmony源码解析之电话子系统——通话流程
OpenAtom OpenHarmony的电话子系统为OS提供了基础的无线通信能力,支持多种网络制式,包括高速无线数据传输和互联网接入。主要功能涵盖语音、短信、彩信、SIM卡管理等。
电话子系统是OpenHarmony架构的重要组成部分,负责CS域(如语音呼叫)和PS域(如数据业务)的服务。系统结构包括应用层(如电话应用、短信应用等)、框架层(SDK提供接口,Framework提供功能模块,如call_manager、cellular_call等)、Hril层(抽象无线硬件设备)和Vendor lib层(与modem交互)等。
代码结构方面,通话管理模块负责CS、IMS和OTT通话,蜂窝通话模块支持2G到5G的语音和数据功能。电话核心服务提供RIL管理和SIM卡功能,数据库模块负责数据存储。RIL Adapter模块屏蔽硬件差异,短彩信模块处理短信和彩信功能,状态注册模块监控网络状态等变化。
源码解析中,通话功能的iptables源码实现涉及多个模块间的协作,如通话管理、蜂窝通话服务、Telephony核心服务和RIL适配。以电话接听(Answer)为例,流程从用户点击answer,通过层层调用,涉及call_manager、cellular_call等服务,最终到达modem处理AT命令。整个过程显示了系统内部复杂的服务交互和跨层通信机制。
电话子系统的核心类处理了各种通话类型和上层应用的接口,如dial、answer等。从UI响应到调用底层modem,每个环节都体现了OpenHarmony的模块化设计和通信流程。
OpenHarmony 3GPP协议开发深度剖析——一文读懂RIL
市场上针对终端操作系统3GPP协议开发的相关资料较为稀缺,即便在Android领域,相关学习文档也较为有限,更不用说专门的协议开发书籍了。这可能与市场需求有关,目前市场上从事前后端软件开发的人员最多,包括我自己。
鉴于我在某手机协议开发团队工作过一段时间,对协议的AP侧和CP侧开发都有所涉猎,因此我尝试基于OpenAtom OpenHarmony(以下简称“OpenHarmony”)源码编写一些内容,旨在帮助大家了解协议开发领域,尽可能将3gpp协议内容与OpenHarmony电话子系统模块相结合进行讲解。据我所知,目前终端协议开发人才非常紧缺。首先声明,我不是协议专家,且已离开该领域五六年,如有错误,欢迎指正。
谈到终端协议开发,我首先想到的就是RIL。
CP:Communication Processor(通信处理器),通常理解为modem侧,也可以理解为底层协议,这部分由各个modem芯片厂商完成(如海思、高通)。
AP:Application Processor(应用处理器),通常指手机终端,putty源码通常理解为上层协议,主要由操作系统Telephony服务进行处理。
RIL:Radio Interface Layer(无线电接口层),通常理解为硬件抽象层,即AP侧将通信请求传给CP侧的中间层。
AT指令:AT指令是应用于终端设备与PC应用之间连接与通信的指令。
常规的Modem开发与调试可以使用AT指令进行操作,而各家的Modem芯片的AT指令都会有各自的差异。因此,手机终端厂商为了能在各种不同型号的产品中集成不同modem芯片,需要进行解耦设计来屏蔽各家AT指令的差异。
于是,OpenHarmony采用RIL对Modem进行HAL(硬件抽象),作为系统与Modem之间的通信桥梁,为AP侧提供控制Modem的接口,各Modem厂商则负责提供对应于AT命令的Vender RIL(这些一般为封装好的so库),从而实现操作系统与Modem间的解耦。
框架层:Telephony Service,电话子系统核心服务模块,主要功能是初始化RIL管理、SIM卡和搜网模块。对应OpenHarmony的源码仓库OpenHarmony/telephony_core_service。这个模块也是非常重要的一个模块,后期单独再做详细解读。
硬件抽象层:即我们要讲的RIL,对应OpenHarmony的源码仓库OpenHarmony/telephony_ril_adapter。RIL Adapter模块主要包括厂商库加载,业务接口实现以及事件调度管理。主要用于屏蔽不同modem厂商硬件差异,为上层提供统一的接口,通过注册HDF服务与上层接口通讯。
芯片层:Modem芯片相关代码,即CP侧,这些代码各个Modem厂商是不开放的,不出现在OpenHarmony中。
硬件抽象层又被划分为hril_hdf层、hril层和venderlib层。
hril_hdf层:HDF服务,基于OpenHarmony HDF框架,提供hril层与Telephony Service层进行通讯。
hril层:hril层的各个业务模块接口实现,比如通话、短彩信、dtcms源码数据业务等。
vendorlib层:各Modem厂商提供的对应于AT命令库,各个厂商可以出于代码闭源政策,在这里以so库形式提供。目前源码仓中已经提供了一套提供代码的AT命令操作,至于这个是针对哪个型号modem芯片的,我后续了解清楚再补充。
下面是ril_adapter仓的源码结构:
本文解读RIL层很小一部分代码,RIL是如何通过HDF与Telephony连接上的,以后更加完整的逻辑梳理会配上时序图讲解,会更加清晰。首先,我们要对OpenHarmony的HDF(Hardware Driver Foundation)驱动框架做一定了解,最好是动手写一个Demo案例,具体的可以单独去官网查阅HDF资料。
首先,找到hril_hdf.c文件的代码,它承担的是驱动业务部分,源码中是不带中文注释的,为了梳理清楚流程,我给源码关键部分加上了中文注释。
上述代码中配置了对应该驱动的moduleName为"hril_hdf",因此我们需要去找到对应驱动的配置文件,以HiDV开发板为例,它的驱动配置在vendor_hisilicon/HiDV/hdf_config/uhdf/device_info.hcs代码中可以找到,如下:
这里可以发现该驱动对应的服务名称为cellular_radio1,那么telephony_core_service通过HDF与RIL进行通信肯定会调用到该服务名称,因此无查找telephony_core_service的相关代码,可以很快定位到telephony_core_service/services/tel_ril/src/tel_ril_manager.cpp该代码,该代码中有一个关键类TelRilManager,它用来负责管理tel_ril。
看tel_ril_manager.cpp中的一个关键函数ConnectRilAdapterService,它就是用来通过HDF框架获取RIL_ADAPTER的服务,之前定义过RIL_ADAPTER_SERVICE_NAME常量为"cellular_radio1",它就是在vendor_hisilicon/XXXX/hdf_config/uhdf/device_info.hcs中配置的hril_hdf驱动对应的服务名称。
OpenHarmony—内核对象事件之源码详解
对于嵌入式开发和技术爱好者,深入理解OpenHarmony的内核对象事件源码是提升技能的关键。本文将通过数据结构解析,揭示事件机制的核心原理,引导大家探究任务间IPC的内在逻辑。
关键数据结构
首先,了解PEVENT_CB_S数据结构,它是wemall 源码事件的核心:uwEventID标识任务的事件类型,个位(保留位)可区分种事件;stEventList双向循环链表是理解事件的核心,任务等待事件时会挂载到链表,事件触发后则从链表中移除。
事件初始化
事件控制块由任务自行创建,通过LOS_EventInit初始化,此时链表为空,表示没有事件发生。任务通过创建eventCB指针并初始化,开始事件管理。
事件写操作
任务通过LOS_EventWrite写入事件,可以一次设置多个事件。1处的逻辑允许一次写入多个事件。2-3处检查事件链表,唤醒等待任务,通过双向链表结构确保任务顺序执行。
事件读操作
轻量级操作系统提供了两种事件读取方式:LOS_EventPoll支持主动检查,而LOS_EventRead则为阻塞读。1处区分两种读取模式,2-4处根据模式决定任务挂起或直接读取。
事件销毁操作
事件使用完毕后,需通过LOS_EventClear清除事件标志,并在LOS_EventDestroy中清理事件链表,确保资源的正确释放。
总结
通过以上的详细分析,OpenHarmony的内核事件机制已清晰可见。掌握这些原理,开发者可以更自如地利用事件API进行任务同步,并根据需要自定义事件通知机制,提升任务间通信的灵活性。
OpenHarmony代码下载编译及源码跳转配置
本文旨在指导在Linux(如Ubuntu .和.,其他系统可参考)环境下下载和编译OpenHarmony(OH)代码,并配置Visual Studio Code(VSCode)以实现Native框架(C++)代码的智能跳转,以提升阅读OH源码的便捷性。1. 下载与编译
从OH官网下载链接(gitee.com/openharmony/d...)获取代码。进入代码根目录后,执行build.sh脚本,例如针对rk开发板的编译命令会包含选项`--gn-flags="--export-compile-commands"`,用于生成compdb数据库,以备后续使用。2. VSCode插件与配置
在编译过程中,安装VSCode的clangd插件,它与compdb文件配合。记得禁用默认的C/C++插件。接着,使用VSCode通过SSH(Windows和macOS用户适用)访问OH源代码目录,创建.vscode文件夹,其中包含settings.json。3.1. 插件安装与启用
在settings.json中填写以下配置:- clangd.path: 指定OH预构建的clangd路径。
- --compile-commands-dir: 编译产生的compdb文件路径,例如在rk上为out/rk/compile_commands.json,需根据实际编译产品找到相应路径。
- --query-driver: 指定OH预构建的clang编译器路径。
3.2. VSCode配置
关闭并重新打开VSCode,当C++文件(如foundation文件夹下的Native C++代码)打开时,clangd将开始索引,索引完成后即可享受代码跳转功能。鸿蒙轻内核M核源码分析:中断Hwi
在鸿蒙轻内核源码分析系列中,本文将深入探讨中断模块,旨在帮助读者理解中断相关概念、鸿蒙轻内核中断模块的源代码实现。本文所涉及源码基于OpenHarmony LiteOS-M内核,读者可通过开源站点 gitee.com/openharmony/k... 获取。中断概念介绍
中断机制允许CPU在特定事件发生时暂停当前执行的任务,转而处理该事件。这些事件通常由外部设备触发,通过中断信号通知CPU。中断涉及硬件设备、中断控制器和CPU三部分:设备产生中断信号;中断控制器接收信号并发出中断请求给CPU;CPU响应中断,执行中断处理程序。中断相关的硬件介绍
硬件层面,中断源分为设备、中断控制器和CPU。设备产生中断信号;中断控制器接收并转发这些信号至CPU;CPU在接收到中断请求后,暂停当前任务,转而执行中断处理程序。中断相关的概念
每个中断信号都附带中断号,用于识别中断源。中断优先级根据事件的重要性和紧迫性进行划分。当设备触发中断后,CPU中断当前任务,执行中断处理程序。中断处理程序由设备特定,且通常以中断向量表中的地址作为入口点。中断向量表按中断号排序,存储中断处理程序的地址。鸿蒙轻内核中断源代码
中断相关的声明和定义
在文件 kernel\arch\arm\cortex-m7\gcc\los_interrupt.c 中定义了结构体、全局变量和内联函数。关键变量 g_intCount 记录当前正在处理的中断数量,内联函数 HalIsIntActive() 用于检查是否正在处理中断。中断向量表在中断初始化过程中设置,用于映射中断号到相应的中断处理程序。中断初始化 HalHwiInit()
系统启动时,在 kernel\src\los_init.c 中初始化中断。HalHwiInit() 函数在 kernel\arch\arm\cortex-m7\gcc\los_interrupt.c 中实现,负责设置中断向量表和优先级组,配置中断源,如系统中断和定时器中断。创建中断 HalHwiCreate()
开发者可通过 HalHwiCreate() 函数注册中断处理程序,传入中断号、优先级和中断模式。函数内部验证参数,设置中断处理程序,最终通过调用 CMSIS 函数完成中断创建。删除中断 HalHwiDelete()
中断删除操作通过 HalHwiDelete() 实现,接收中断号作为参数,调用 CMSIS 函数失能中断,设置默认中断处理程序,完成中断删除。中断处理执行入口程序
默认的中断处理程序 HalHwiDefaultHandler() 仅用于打印中断号后进行死循环。HalInterrupt() 是中断处理执行入口程序的核心,它包含中断数量计数、中断号获取、中断前后的操作以及调用中断处理程序的逻辑。开关中断
开关中断用于控制CPU是否响应外部中断。通过宏 LOS_IntLock() 关闭中断, LOS_IntRestore() 恢复中断状态, LOS_IntUnLock() 使能中断。这组宏对应汇编函数,使用寄存器 PRIMASK 控制中断状态。小结
本文详细解析了鸿蒙轻内核中断模块的源代码,涵盖了中断概念、初始化、创建、删除以及开关操作。后续文章将带来更多深入技术分享。欢迎在 gitee.com/openharmony/k... 分享学习心得、提出问题或建议。关注、点赞、Star 和 Fork 到个人账户,便于获取更多资源。OpenHarmony 代码学习4:Ability子系统 源码解析(更新太快,跟不上步伐了)
深入探讨OpenHarmony代码学习中关于Ability子系统的源码解析,重点关注基于monthly_的代码架构与配置。
在源码解析中,SystemAbility的配置sa_profile至关重要,它确保了以c++实现的SA在加载注册逻辑时能够完成SA的注册,反之,未配置profile的System Ability将不会完成注册。可见abilitymgr等系统服务SA以特定方式运行,如.xml所示,ams的libabilityms.z.so在foundation进程中启动,并在启动后即向samgr组件注册SystemAbility,实现本地跨IPC访问。
进一步,分析AbilityManagerService作为SystemAbility的管理器,提供管理Ability生命周期的管理能力。以AbilityManagerService::StartAbility为起点,此方法支持4种Startability,其中IRemoteObject属于分布式软总线子系统的ipc组件,负责进程间通信。理解IPC与RPC机制,IPC与RPC在实现跨进程通信中扮演重要角色,IPC使用Binder驱动,适合设备内跨进程通信,而RPC采用软总线驱动,适用于跨设备跨进程通信。客户端与服务器通过客户端-服务器模型进行通信,通过代理获取服务提供方的接口进行数据交互。三方应用通过FA提供的接口绑定服务提供方的Ability,获取代理,实现通信。
在StartAbility中,callerToken由AbilityRuntime::AbilityContextImpl::StartAbility传入的AbilityContextImpl成员变量token_决定,通常指要启动的Ability。此调用链将在后续应用启动流程中总结,具体路径可参考官网介绍。
继续深入代码分析,观察StartAbility中的调用链,最终向BMS调用StartAbilityInner方法。根据ability类型的不同,启动方式也不同,已在代码段中进行了标注。在OpenHarmony代码学习中,PageAbility作为具备ArkUI实现的Ability,是最具直观性的用户可见并可交互的实例,通常由missionListManager启动。
OpenHarmony Camera源码分析
当前,开源在科技进步和产业发展中扮演着越来越重要的角色,OpenAtom OpenHarmony(简称“OpenHarmony”)成为了开发者创新的温床,也为数字化产业的发展开辟了新天地。作为深开鸿团队的OS系统开发工程师,我长期致力于OpenHarmony框架层的研发,尤其是对OpenHarmony Camera模块的拍照、预览和录像功能深入研究。
OpenHarmony Camera是多媒体子系统中的核心组件,它提供了相机的预览、拍照和录像等功能。本文将围绕这三个核心功能,对OpenHarmony Camera源码进行详细的分析。
OpenHarmony相机子系统旨在支持相机业务的开发,为开发者提供了访问和操作相机硬件的接口,包括常见的预览、拍照和录像等功能。
系统的主要组成部分包括会话管理、设备输入和数据输出。在会话管理中,负责对相机的采集生命周期、参数配置和输入输出进行管理。设备输入主要由相机提供,开发者可设置和获取输入参数,如闪光灯模式、缩放比例和对焦模式等。数据输出则根据不同的场景分为拍照输出、预览输出和录像输出,每个输出分别对应特定的类,上层应用据此创建。
相机驱动框架模型在上层实现相机HDI接口,在下层管理相机硬件,如相机设备的枚举、能力查询、流的创建管理以及图像捕获等。
OpenHarmony相机子系统包括三个主要功能模块:会话管理、设备输入和数据输出。会话管理模块负责配置输入和输出,以及控制会话的开始和结束。设备输入模块允许设置和获取输入参数,而数据输出模块则根据应用场景创建不同的输出类,如拍照、预览和录像。
相关功能接口包括相机拍照、预览和录像。相机的主要应用场景涵盖了拍照、预览和录像等,本文将针对这三个场景进行流程分析。
在分析过程中,我们将通过代码注释对关键步骤进行详细解析。以拍照为例,首先获取相机管理器实例,然后创建并配置采集会话,包括设置相机输入和创建消费者Surface以及监听事件,配置拍照输出,最后拍摄照片并释放资源。通过流程图和代码分析,我们深入理解了拍照功能的实现。
对于预览功能,流程与拍照类似,但在创建预览输出时有特定步骤。开始预览同样涉及启动采集会话,并调用相关接口进行预览操作。
录像功能则有其独特之处,在创建录像输出时,通过特定接口进行配置。启动录像后,调用相关方法开始录制,并在需要时停止录制。
通过深入分析这三个功能模块,我们对OpenHarmony Camera源码有了全面的理解,为开发者提供了宝贵的参考和指导。
本文旨在全面解析OpenHarmony Camera在预览、拍照和录像功能上的实现细节,希望能为开发者提供深入理解与实践的指导。对于感兴趣的技术爱好者和开发者,通过本文的分析,可以更深入地了解OpenHarmony Camera源码,从而在实际开发中应用这些知识。