1.[CVPR'2018]Unsupervised Feature Learning via Non-Parametric Instance Discrimination
2.用PointNet分类3D点云
3.CNTK101:使用CNTK进行线性回归
4.MQL-Meta Q Learning
[CVPR'2018]Unsupervised Feature Learning via Non-Parametric Instance Discrimination
作者在CVPR'的加权研究中揭示了视觉数据本身蕴含的表观相似性,而非完全依赖于语义标签。稀疏他们质疑:能否通过无标签的分类纯判别学习,构建一个反映图像外观相似性的器源权分有效度量?为此,他们提出了一种新颖的码加方法,即实例判别,类法ccess源码将每个视为独特的加权类别,模型的稀疏任务转变为区分这些实例,这是分类对比学习中常见的代理任务。
然而,器源权分面对大量类别的码加问题,传统的类法softmax分类可能面临挑战。为解决这一难题,加权研究者采用noise-contrastive estimation (NCE)技术,稀疏模拟softmax的分类完整分布,并引入近似正则化来优化学习过程,使得模型在面对众多类别时仍能稳定学习。
核心目标是通过无监督学习,学习图像的表征,它能反映间的相似度。公式表达为:[公式],通过神经网络映射到特征向量v,并用这个特征计算间的距离,相似的距离应更近。学习的目标可以看作一个无参数的分类任务,每个对应一个类别,特征通过神经网络映射为[公式]。
传统分类器的问题在于依赖于权重,且类别过多可能导致参数过多。作者提出无参数的softmax分类器,将类别权重简化为每个类别的表征,目标是最大化[公式](对数似然估计)。为了减少计算,作者引入Memory Bank,火鸟门户源码5.2存储所有类别特征,通过迭代更新。
在解决类别过多问题上,研究者采用NCE和近端正则化,将多分类转化为二分类问题,以优化训练效率。至于测试阶段,通过模型得到表征,找出与之最相似的k个类别,并以加权K近邻的方式进行预测。
用PointNet分类3D点云
在本教程中,我们将学习如何训练PointNet进行分类。我们将主要关注数据和训练过程;展示如何从头开始编码 Point Net 的教程位于此处。本教程的代码位于这个 Github库中,我们将使用的笔记本位于这个 Github库中。一些代码的灵感来自于这个 Github库。
推荐:用 NSDT设计器快速搭建可编程3D场景
1、获取数据
我们将使用只有 个类的较小版本的 shapenet 数据集。如果你使用的是Colab,可以运行以下代码来获取数据。警告,这将需要很长时间。
如果你想在本地运行,请访问上面第一行的链接,数据将自动下载为 zip 文件。
该数据集包含 个带有类标识符的文件夹(自述文件中称为“synsetoffset”)。文件夹结构为:
自定义 PyTorch 数据集位于此处,解释代码超出了本教程的范围。需要了解的重要一点是,数据集可以获取 (point_cloud, class) 或 (point_cloud, seg_labels)。在训练和验证期间,我们向点云添加高斯噪声,并围绕垂直轴(本例中为 y 轴)随机旋转它们。手机盘点源码下载我们对点云进行最小-最大归一化,以便它们的范围为 0-1。我们可以像这样创建 shapenet 数据集的实例:
2、探索数据
在开始任何训练之前,让我们先探讨一些训练数据。为此,我们将使用 Open3d 版本 0..0(必须为 0..0 或更高版本)。
我们现在可以使用以下代码查看示例点云。你应该注意到,每次运行代码时点云都会以不同的方向显示。
你可能不会注意到噪音有太大差异,因为我们添加的量很小;我们添加了少量,因为不想极大地破坏结构,但这一小量足以对模型产生影响。现在我们就来看看训练分类的数据频率。
从图2中我们可以看出,这绝对不是一个平衡的训练集。因此,我们可能想要应用类别权重,甚至使用焦点损失来帮助我们的模型学习。
3、PointNet损失函数
当训练PointNet进行分类时,我们可以使用 PyTorch 中的标准交叉熵损失,但我们还想添加包括论文中提到的正则化项。
正则化项强制特征变换矩阵正交,但为什么呢?特征变换矩阵旨在旋转(变换)点云的高维表示。我们如何确定这种学习的高维旋转实际上是在旋转点云?为了回答这个问题,让我们考虑一些所需的旋转属性。
我们希望学习到的旋转是仿射的,这意味着它保留结构。我们希望确保它不会做一些奇怪的事情,例如将其映射回较低维度的空间或弄乱结构。我们不能只绘制 nx 点云来检查这一点,发现大牛指标源码但我们可以通过鼓励旋转正交来让模型学习有效的旋转。这是因为正交矩阵同时保留长度和角度,而旋转矩阵是一种特殊类型的正交矩阵。我们可以“鼓励”模型通过使用以下项进行正则化来学习正交旋转矩阵:
我们利用正交矩阵的一个基本属性,即它们的列和行是正交向量。对于完全正交的矩阵,图 3 中的正则化项将等于 0。
在训练期间,我们只需将此项添加到我们的损失中。如果你已经完成了之前关于如何编码PointNet的教程,可能还记得特征转换矩阵 A 由分类头返回。
现在让我们编写PointNet损失函数的代码。我们已经添加了加权(平衡)交叉熵损失和焦点损失的术语,但解释它们超出了本教程的范围。其代码位于此处。该代码改编自这个 Github库。
4、训练PointNet用于分类
现在我们已经了解了数据和损失函数,我们可以继续进行训练。
对于我们的训练需要量化模型的表现。通常我们会考虑损失和准确性,但对于这个分类问题,我们需要一个衡量错误分类和正确分类的指标。想想典型的混淆矩阵:真阳性、假阴性、真阴性和假阳性;我们想要一个在所有这些方面都表现良好的分类器。
马修斯相关系数 (MCC) 量化了我们的模型在所有这些指标上的表现,并且被认为是比准确性或 F1 分数更可靠的单一性能指标。MCC 的范围从 -1 到 1,其中 -1 是最差的性能,1 是最好的性能,0 是随机猜测。我们可以通过 torchmetrics 将 MCC 与 PyTorch 结合使用。封包改车源码
训练过程是一个基本的 PyTorch 训练循环,在训练和验证之间交替。
我们使用 Adam 优化器和我们的点净损失函数以及上面图 3 中描述的正则化项。对于点净损失函数,我们选择设置 alpha,它对每个样本的重要性进行加权。
我们还设置了 gamma 来调节损失函数并迫使其专注于困难示例,其中困难示例是那些以较低概率分类的示例。有关更多详细信息,请参阅笔记本中的注释。人们注意到,使用循环学习率时模型训练得更好,因此我们在这里实现了它。
请按照笔记本进行训练循环,并确保你有 GPU。如果没有,请删除调度程序并将学习率设置为 0.,几个 epoch 后你应该会得到足够好的结果。如果遇到任何 PyTorch 用户警告(由于 nn.MaxPool1D 的未来更新),可以通过以下方式抑制它们:
5、训练结果
我们可以看到,训练和验证的准确率都上升了,但 MCC 仅在训练时上升,而在验证时却没有上升。这可能是由于验证和测试分组中某些类的样本量非常小造成的;因此在这种情况下,MCC 可能不是用于验证和测试的最佳单一指标。这需要更多的调查来确定 MCC 何时是一个好的指标;即多少不平衡对于 MCC 来说是过多?每个类别需要多少样本才能使 MCC 有效?
我们来看看测试结果:
我们看到测试准确度约为 %,但 MCC 略高于 0。由于我们只有 个类,让我们查看笔记本中的混淆矩阵,以更深入地了解测试结果。
大多数情况下,分类是可以的,但也有一些不太常见的类别,例如“火箭”或“滑板”。该模型在这些类别上的预测性能往往较差,而在这些不太常见的类别上的性能是导致 MCC 下降的原因。
另一件需要注意的事情是,当你检查结果(如笔记本中所示)时,将在更频繁的分类中获得良好的准确性和自信的表现。然而,在频率较低的课程中,你会发现置信度较低且准确性较差。
6、检查关键集
现在我们将研究本教程中最有趣的部分,即关键集。关键集是点云集的基本基础点。这些点定义了它的基本结构。这里有一些代码展示了如何可视化它们。
这里有一些可视化,请注意,我使用“draw()”来获得更大的点大小,但它在 Colab 中不起作用。
我们可以看到,关键集展示了其对应点云的整体结构,它们本质上是稀疏采样的点云。这表明训练后的模型实际上已经学会了区分差异结构,并表明它实际上能够根据每个点云类别的区别结构对其进行分类。
7、结束语
我们学习了如何从头开始训练PointNet以及如何可视化点集。如果你真的感兴趣,请尝试提高整体分类性能。以下是一些帮助你入门的建议:
CNTK:使用CNTK进行线性回归
如果你刚开始接触CNTK或者机器学习,我们的专栏正适合你!在这一讲中,你将会接触到一种在机器学习中简单高效且广泛应用的模型:该模型通过利用其可伸缩性,以最快的方式对海量数据集,利用现有的计算资源(一个或多个 CPU 内核、一个或多个 GPU、一组 CPU 或一组 GPU)通过 CNTK 库直观地进行数据分析。
我们的问题:一家癌症医院为我们提供了一批患者的数据,并希望我们能确定患者是否患有致命的恶性肿瘤:这是一个分类(classification)问题。为了能让我们对每个病人进行分类,医院提供的数据是:患者的年龄和肿瘤的大小。有了这些数据,我们就有了一个主观的想法:也许年轻的病人和/或小肿瘤患者不太可能患上恶性肿瘤?
在这一讲中,我们将机器生成的模拟数据集进行练习:每个病人在图表中表示成为一个点,这个点被称为数据实例(instance)。其中红色的点表示其患有恶性肿瘤、蓝色则表示良性。
我们的目标是构建一个分类器(classifier),它可以根据每个病人的属性(年龄和肿瘤大小)来进行学习,从而分辨出病人所患的肿瘤是良性还是恶性的。在这一讲中,我们会使用 CNTK 构造一个线性分类器(linear classifier)——这是一种深度学习网络中的基础元素。
逻辑回归(Logistic regression)是一种常用而基础的机器学习算法,它使用线性加权的特征组合,生成预测样本属于不同类的概率。在我们的例子中,分类器将产生一个区间在 [公式] 之间的概率,我们可以将它与某一个阈值 (如 [公式]) 相比,从而判断其所属的类别 ( [公式]类或 [公式]类 )。我们的方法也可以很容易地扩展到存在多个类的情况。
逻辑回归(logistic regression,LR)网络是一种简单的模型。在过去的十年里,逻辑回归驱动了许多重要的机器学习算法及其应用。它属于一种线性模型,我们能将一组存储待分类实例特征的向量 [公式] (又称特征向量,下图中蓝色的点集)作为模型的输入,得出证据(evidence) [公式] (绿色节点的输出,又称激活)。在输入层的每一个特征都与输出层存在一个连接权重 [公式] (以不同粗细的黑线表示,见下图)
在本教程中,我们将使用 NumPy 库生成的合成数据。在真实世界的问题中,你会用到CNTK中的读取器(Reader),读取特征值(年龄 和 肿瘤大小),并与每个患者对应。模拟的年龄变量被缩小到与另一个变量的范围相似:这是数据预处理的一个关键方面,我们将在以后的教程中进一步了解这些内容。
在CNTK中,输入变量是面向用户代码的容器(container)。用户通过向输入变量提供不同的实例数据(数据点或数据点示例),等同于 (年龄、肿瘤大小) 元组在我们的例子中) 作为模型函数的输入 (也就是训练) 和模型评估 (又称测试)。因此,输入的形状必须与将提供的数据的形状相匹配。
在本例中,每一次迭代将对[公式] 个样本进行处理(上面图中的 [公式] 个点),也就是 [公式] 。我们想训练 [公式] 个数据点。如果数据中的样本数仅为 [公式] 个,则训练器将通过数据进行 [公式] 轮传递。这由 [公式]表示。注意:在现实世界中,我们会得到一定数量的标记数据 (在这个例子中,(年龄, 大小) 观察及其标签 (良性/恶性))。我们将其中的大量的数据(比如说 [公式] %)用于训练,并将剩下的部分用于评估训练过的模型。
对于评估, 我们将网络的输出[公式] 为两个类的概率分布, 每个观察的概率是恶性的或良性的。让我们比较一下真实的标签和预测出来的分类,他们应该一致。
对于数据可视化, 我们可以将结果可视化。在我们的示例中,可以使用患者的两个维度的属性作为输入 ([公式] 轴上的患者年龄和 [公式] 轴上的肿瘤大小) 来绘制数据,患者的肿瘤性质,即我们的输出表示为图像上点的颜色 (红色为恶性、蓝色为良性)。对于具有较高维度的数据,对数据进行可视化是一件充满挑战性的工作。还好我们有先进的降维技术, 如 [公式],允许我们来做这样的可视化。
MQL-Meta Q Learning
本文首先观察到,即使不借助meta-RL算法,通过轨迹作为context也能实现与meta-RL当前最佳效果相当的结果,如图所示。
在此基础上,本文提出了名为MQL的新算法,其meta-training目标简单明了,即最大化训练任务的平均性能,具体表示为[公式],它衡量的是策略在任务k中轨迹的评估性能。
MQL通过以下目标调整策略参数,旨在策略适应新任务时保持稳定。新任务上的性能由第一项衡量,[公式] 是新任务或meta训练任务的轨迹概率,用于加权旧数据在新任务上的表现。第三项[公式] 评估新任务与meta训练任务的相似性,防止策略在适应过程中过度适应某一特定情况。
在MQL的背景中,状态记为x,策略为u,策略网络采用确定性网络[公式],值函数使用TD-loss进行训练。倾向性得分和ESS的计算涉及两个分布的比较,使用重要性采样方法定义,具体公式见文中。
MQL分为meta-training和适应新任务两个阶段。在meta-training阶段,目标是减小TD error,与传统基于梯度的meta-RL方法如MAML有所不同,MAML是通过最大化每个任务的fine-tune后性能。
在适应新任务阶段,MQL初始化策略参数采用元训练后的θ,并引入了off-policy adaptation。通过重要性采样权重,MQL利用meta-training的replay-buffer,通过logistic分类器对数据进行加权更新,以处理新任务的差异性。
实验结果表明,MQL在meta-RL基准上的表现优于现有方法,且具有较高的采样效率。尽管在特定环境下(如Ant-Goal-2D)存在性能下降,但MQL的适应性修正能够弥补这个问题。一系列消融实验验证了超参数设置的合理性,尽管MQL和TD3+context算法表现接近,但MQL展现出了独特的性能。
最后,通过可视化实验数据,λ值在ant-fwd-back训练过程中保持在0.左右,反映任务间的差异;而β值稳定在0.8,证明了权重设置的有效性。
2025-01-16 11:26
2025-01-16 10:18
2025-01-16 09:58
2025-01-16 09:52
2025-01-16 09:44
2025-01-16 09:14