1.egԴ?源码?
egԴ??
(1)求直线AB的解析表达式;
RT△ABO AO = 4√3∠ABO = °
所以,AB = 2AO = 8√3
下钩股定理,源码B0 =
B(,源码0)
让AB直线解析公式:Y = KX + B
A(0,4√3),B(,源码0)入上述公式,
浏览:?源码= - √3/3 b = 4的√3因此,为y =( - √3/3)×4√3
(2)搜寻的源码拷贝网站源码出错边长边缘△中性粒细胞(T,代数),源码边△PMN的源码顶点M运动时,以配合原点O,源码t的源码值;
因为△PMN等边三角形,所以∠MPN =∠PNM = °
而∠PNM =∠NPB +∠B =∠NPB +°
在∠NPB = °
所以,源码∠MPB =∠MPN +∠NPM = °+ °= °
即MP⊥AB
即直角三角形,源码△MPB此外,源码openjdk 源码 gitPM = MN = PN = BN
所以,源码N RT△MPB中点
> PM = MN = PN = BM / 2
当AP =√3T,源码PB = 8√3 - √3吨=√3 *(8-T)
RT△MPB MBP = ° /> BM = [√3 *(8-t)〕/(√3/2)= 2 *(8-T)>因此,PM = NM = PN = BM / 2 =(8-叔)
当M和O重合RT△PMB是RT△PBO
PM = PO = BO / 2 = 6
:8-T = T = 2
(3)如果我们采取的OB的中点D的边缘的外径内Rt的△AOB△PMN和矩形ODCE的矩形ODCE,点C的线段AB,位于等边的weekptr 实现源码重叠部分的面积S,如图2所示的请求时,该函数关系式S和t 0≤吨≤2秒,和计算出的S最大。
图,设置的PM的交叉CE F,在H-AO跨:PN跨CE(2),白金岛源码当t = 2,M和O重合
而G
当t = 1, PM通过点?
因此,当0≤T≤1日下午,在△OMN与矩形ODCE的梯形翁奇的重叠部分
,当1≤T≤2时,apache kylin 源码△OMN矩形ODCE的身影重叠部分阴影
点P AO垂直于踏板为Q的
CE垂直线,点踏板,SD BO,
:C,E,AB ,AO中点
所以,点C(6,2√3),因为PQ / / CE / / BO
:AP / AC = PQ / CE:(√3吨)/(√3 )= PQ / 6
PQ = 3T / 2
因此,由勾股定理:AQ =源码3T / 2
所以,QE = PS = AE-AQ = 2√3 - ( √3T / 2)
因为CE / / BO,
所以:△PFG∽△PMN△PFG是等边三角形,而
PS⊥FG
因此,S是FG的中点和∠GPC =∠GCP = °
所以,PG = GC
所以,FG = GC =(2 /√3)* PS =(2 /√3)* [2√3 - (√3吨/ 2)] = 4 - 叔
,CE = OD = 6
所以,EF + FG + GC = EF 2 * FG = EF +(8-2吨的)= 6
:EF = 2T-2
EG = EF + FG = 2T-2 +4 T = T +2
中,Rt△EFH∠EHF = °
EH =(√3)EF
Rt的△EFH面积=(1/2)的EF * EH =(√3/2)EF ^ 2 =(√3/2)* [t-1的(2) ] ^ 2 = 2√3(T-1)^ 2
(1)已知BN = PN = 8吨
所以,ON = OB-BN = - (8-T)= 4 +吨
对于因此,梯形翁奇区域= [(EG + ON)* OE] / 2 = [(吨2 4 + t)的* 2√3] / 2 = 2√3(吨3)
因此,在阴影区域S = [2√3(吨3)] - [2√3(吨-1)^ 2] =(2√3)[(叔3) - (T-1)^ 2] =(2√3)(-T ^ 2 +3 T +2日)1≤T≤2,
因此,二次函数-T ^ 2 +3 T +2的最大值,当t = -b/2a = 3/2:Smax的= /4
2024-12-29 01:43
2024-12-29 01:39
2024-12-29 00:46
2024-12-29 00:42
2024-12-28 23:35
2024-12-28 23:31