【开奖群源码】【amr转mp3源码】【wav转 mp3源码】atlas源码解析

1.【CANN训练营笔记】Atlas 200I DK A2体验手写数字识别模型训练&推理
2.盘点8个地图开发的码解开源项目,yyds!码解
3.华为Atlas 200DK环境搭建&推理测试
4.Atlas系列-编译部署-Atlas2.1.0独立部署
5.UE5.1卡通渲染管线修改 学习笔记(改源码版)
6.apache atlas独立部署(hadoop、码解hive、码解kafka、码解hbase、码解开奖群源码solr、码解zookeeper)

atlas源码解析

【CANN训练营笔记】Atlas 200I DK A2体验手写数字识别模型训练&推理

       在本次CANN训练营中,码解我们对华为Atals I DK A2开发板进行了详细的码解探索,该板子配备有4GB内存和Ascend B4 NPU,码解运行的码解是CANN 7.0环境。

       首先,码解为了顺利进行开发,码解我们需要下载预编译的码解torch_npu,并安装PyTorch 2.1.0和torchvision 0..0。码解接着,配置环境变量,确保系统可以识别所需的库和文件。Ubuntu系统和欧拉系统下的安装步骤有所不同,例如,需要将opencv的头文件链接到系统默认路径。

       对于ACLLite库,我们采取源码安装方式,确保动态库的识别,并在LD.so.conf.d下添加ffmpeg.conf配置。同时,设置ffmpeg的安装路径和环境变量。接着,克隆ACLLite代码仓库并安装必要的amr转mp3源码依赖。

       进入模型训练阶段,我们调整环境变量来减少算子编译时的内存占用,然后运行训练脚本来启动训练过程。在训练结束后,我们生成了mnist.pt模型,并将其转换为mnist.onnx模型,以便进行在线推理。

       在线推理阶段,我们使用训练得到的模型对测试进行识别。测试展示了一次实际的推理过程,其结果直观地展示了模型的性能。

       对于离线推理,我们从PyTorch框架导入ResNet模型,并转换为升腾AI处理器能识别的格式。提供了下载模型和转换命令,只需简单拷贝执行。将在线推理的mnist.onnx模型复制到model目录后,我们配置AIPP,进行模型转换,然后编译样例源码并运行,得到最终的推理结果。

盘点8个地图开发的开源项目,yyds!

       地图开发领域中,开源项目提供了丰富的资源和工具,以下是一些具有代表性的项目,它们在不同方面展现出其独特价值。

       Historical-Atlas

       这个项目以其直接的wav转 mp3源码命名“历史地图集”吸引了众多关注,作者采用的AGPL-3.0开源协议使得它不仅适合作为参考设计思路或在线服务提供,也鼓励其作为软件产品对外分发时保持开源状态。项目中存在一些遗留问题,如数据库配置和用户信息存储的实现,但通过对照源码,还原表结构并不困难。

       vue3-ts-cesium-map-show

       由地虎降天龙开发的这个项目,采用MIT开源许可协议,是一个专注于三维可视化数字城市应用,结合Cesium-1.开源库,提供后台可视化编辑与保存功能。

       QGIS

       作为开源地理信息系统,QGIS支持Windows、Linux、MacOS,拥有强大的地理空间管理与分析能力,包括时间动画、3D地图预览和地图美化等特性,使用户能够生成美观的地图。

       react-baidu-map

       由uiw开发的react-baidu-map项目,基于React封装了百度地图组件,简化了将地图集成到React项目的过程,使开发者能够快速接入地图功能。

       Maptalks

       Maptalks是一个HTML5地图引擎,基于原生ES6 Javascript开发,提供二三维一体化地图能力,通过二维地图旋转、倾斜增加三维视角,数字化校园平台 源码并支持插件化设计。

       QuickEarth-Free

       QuickEarth(QE)是一个面向个人免费开放的二三维一体化Web端矢量和栅格数据渲染引擎,适用于气象、海洋、水文、环境等领域,帮助用户实现数据可视化。

       地图下载器

       使用Java开发的地图瓦片图下载工具,支持多种地图服务,如OpenStreetMap、天地图、谷歌地图等,提供XYZ瓦片图下载与合并功能,方便用户获取地图数据。

       L7

       L7是蚂蚁金服AntV推出的一款基于WebGL的开源大规模地理空间数据可视分析框架,专注于数据可视化表达,通过多种视觉变量设置实现信息的有效呈现,满足地图图表、BI系统可视化分析、GIS等领域的需求。

       xdh-map

       xdh-map是一款基于Openlayers的地图应用Vue组件,内置多种地图瓦片,并支持与多个PGIS厂商对接,提供丰富的组件,如文本、图形、热力图等,以及与ECharts结合实现基于地理位置的小说搜索引擎 源码图表,满足项目常见需求。

       这些开源项目在地图开发领域中各具特色,为开发者提供了丰富的选择和强大的技术支持。

华为Atlas DK环境搭建&推理测试

       引子

       华为Atlas DK,一款边端推理芯片,本文将带你了解如何搭建其开发环境并进行推理测试。

       一、环境搭建

       1.1 物理硬件准备

       需要一台x架构的Linux PC机、USB连接线、网线、内存不低于GB的SD卡与SD卡读卡器。

       1.2 软件准备

       需从网络自行下载1.0.版本的固件驱动,官网提供的最低驱动版本为1.0.,但该版本不兼容设备。

       1.3 刻录开发板系统

       将SD卡插入读卡器,安装相关软件包,创建制卡工作目录,上传操作系统与驱动包,使用脚本制卡。

       1.4 网络配置

       安装USB网卡驱动,配置USB与NIC网卡IP,通过SSH登录设备并调整网络设置。

       1.5 安装CANN

       确保CANN版本与固件驱动版本一致,从网络下载对应的CANN版本,卸载不符合版本的Python,安装CANN。

       二、项目演示:基于Resnet的分类应用

       获取源码包并安装依赖,如opencv与numpy。进行样例输入准备与模型转换。使用ATC进行模型转换。

       设置环境变量,执行运行脚本。展示样例结果,包括置信度TOP5的类别标识、置信度信息和对应类别信息。

Atlas系列-编译部署-Atlas2.1.0独立部署

       本文将为您详细介绍如何独立部署 Atlas 2.1.0 版本,依赖组件包括 solr、hbase、zookeeper、hive、hadoop、kafka。我们将采用 Docker 容器与 Linux 环境进行部署。如果您在 Atlas 的编译部署过程中遇到问题,本指南将提供解决方案。

       部署流程如下:

       部署环境

       1. Linux 环境:若无 Linux 环境,可通过 Docker 构建。如已安装 Linux,推荐使用 CentOS 镜像,本文作者最初在 Windows 环境下进行部署,并制作了一个 CentOS 镜像。构建步骤如下:

       1. 拉取镜像

       2. 运行容器

       2. Zookeeper 环境搭建:使用 Docker 方式搭建 Zookeeper,配置步骤包括:

       1. 拉取 Docker 镜像

       2. 运行容器

       3. Hadoop 环境搭建:同样采用 Docker 方式搭建 Hadoop,步骤如下:

       1. 拉取镜像

       2. 建立 Hadoop 用的内部网络

       3. 创建并启动 Master 容器,映射端口,如 端口用于 Hiveserver2,以便后续客户端通过 beeline 连接 Hive

       4. 创建 Slave 容器

       5. 修改 hosts 文件,将 Master 和 Slave 的 IP 地址映射到容器内部

       6. 启动 Hadoop,格式化 HDFS,并启动全部服务

       7. 访问 Web 查看服务状态,如 hdfs: localhost: 和 yarn: localhost:

       4. 部署 Hive:由于 Hive 镜像与 Hadoop 镜像整合,使用已启动的 Hadoop 镜像进行部署:

       1. 进入 Master 容器

       2. 修改配置文件,添加相关环境变量

       3. 执行源命令生效

       4. 完成数据库配置,确保与 Hive 配置文件中的分隔符一致,并关闭 SSL 验证

       5. 上传 MySQL 驱动到 Hive 的 lib 目录,调整 jar 包配置,确保 slf4j 和 guava 包版本一致

       6. 初始化元数据库,完成 Hive 的安装与启动

       7. 修改 Hadoop 权限配置

       8. 启动 Hiveserver2

       9. Hbase 搭建:由于使用 Docker 遇到问题,改为在容器外搭建 Hbase 环境。步骤包括:

       1. 拉取容器

       2. 创建并运行容器

       3. 进入容器

       4. 修改 Hbase 配置

       5. 启动 Hbase

       6. 访问 Web 界面地址 localhost:

       . Solr 搭建:使用 Docker 方式搭建 Solr,步骤如下:

       1. 拉取镜像

       2. 运行容器

       3. 创建 collection

       4. 访问 Web 界面地址 localhost:

       . Atlas 独立部署:Atlas 2.1.0 版本独立部署依赖外部组件,不同于集成部署。步骤包括:

       1. 从 Apache Atlas 下载源码,如 apache-atlas-2.1.0-server.tar.gz

       2. 使用 Docker 镜像环境进行编译,选择之前构建的基础环境

       3. 将源码复制到容器内

       4. 修改 pom.xml 文件以适应环境依赖

       5. 执行编译命令

       6. 解压 /distro/target/apache-atlas-2.1.0-bin.tar.gz 文件

       7. 进入 bin 目录,启动应用

       至此,Atlas 2.1.0 版本独立部署完成,可访问 localhost: 查看部署结果。

UE5.1卡通渲染管线修改 学习笔记(改源码版)

       UE5.1的卡通渲染管线修改笔记

       起始于提升MMD制作质量的需求,从C4D的octane到Blender的Eevee和Cycle,再到现在的UE5,探索了各种卡渲方法,包括后处理和自发光。现在转向直接修改源码,回顾过去发现自己的学习路径混乱,缺乏记录,因此决定补写这篇学习笔记,以供参考。

       在探索过程中,我借鉴了前辈们在卡通渲染领域的成果,通过预加载ToonShaderShadowAtlas和ToonShaderSpecularAtlas两个曲线图谱,以及相应的Sampler和高度参数。添加ShadingModel时,我选择了Toon、ToonSSP和ToonSDF,涉及了阴影重映射、高光重映射,以及整体阴影着色的优化。

       对于KajiyaKai高光,我利用Anisotropy作为输入,并通过一个参数控制是否启用。SDF阴影着色方面,尝试将算法内置Shader以解决现有问题,尽管初期尝试受限。扩展GBuffer以适应新增ShadingModel的需求,特别关注了ToonData的处理。

       在Material文件夹中,我创建了MaterialExpressionToonShaderCustomOutput,结合ToonCurve选择、环境反射、SDF输入等功能,实现了定制化的输出。同时,我还注意到了Lumen修正和BackFace方案的选用。

       UE5.1版本中,修改CreateToonOutLinePassProcessor是关键步骤,以处理超过个Pass的问题。尽管扩展ShadingModel上限的方案暂未使用,但已做了相关笔记,涉及GBufferInfo、ShaderGenerationUtil和EngineType的改动。

       总结来说,本文记录了从理论学习到实践应用的UE5.1卡通渲染管线修改过程,供后来者参考和学习。

apache atlas独立部署(hadoop、hive、kafka、hbase、solr、zookeeper)

       在CentOS 7虚拟机(IP: ...)上部署Apache Atlas,独立运行时需要以下步骤:

       Apache Atlas 独立部署(集成Hadoop、Hive、Kafka、HBase、Solr、Zookeeper)

       **前提环境**:Java 1.8、Hadoop-2.7.4、JDBC驱动、Zookeeper(用于Atlas的HBase和Solr)

       一、Hadoop 安装

       设置主机名为 master

       关闭防火墙

       设置免密码登录

       解压Hadoop-2.7.4

       安装JDK

       查看Hadoop版本

       配置Hadoop环境

       格式化HDFS(确保路径存在)

       设置环境变量

       生成SSH密钥并配置免密码登录

       启动Hadoop服务

       访问Hadoop集群

       二、Hive 安装

       解压Hive

       配置环境变量

       验证Hive版本

       复制MySQL驱动至hive/lib

       创建MySQL数据库并执行命令

       执行Hive命令

       检查已创建的数据库

       三、Kafka 伪分布式安装

       安装并启动Kafka

       测试Kafka(使用kafka-console-producer.sh与kafka-console-consumer.sh)

       配置多个Kafka server属性文件

       四、HBase 安装与配置

       解压HBase

       配置环境变量

       修改配置文件

       启动HBase

       访问HBase界面

       解决配置问题(如JDK版本兼容、ZooKeeper集成)

       五、Solr 集群安装

       解压Solr

       启动并测试Solr

       配置ZooKeeper与SOLR_PORT

       创建Solr collection

       六、Apache Atlas 独立部署

       编译Apache Atlas源码,选择独立部署版本

       不使用内置的HBase和Solr

       编译完成后,使用集成的Solr到Apache Atlas

       修改配置文件以指向正确的存储位置

       七、Apache Atlas 独立部署问题解决

       确保HBase配置文件位置正确

       解决启动时的JanusGraph和HBase异常

       确保Solr集群配置正确

       部署完成后,Apache Atlas将独立运行,与Hadoop、Hive、Kafka、HBase、Solr和Zookeeper集成,提供数据湖和元数据管理功能。

更多内容请点击【休闲】专栏

精彩资讯