【天天养猪协议源码】【spring笔记源码解析】【短资金公式源码】lrucache源码分析

2024-12-29 06:06:38 来源:溯源码燕窝图片 分类:百科

1.android volley ImageLoader+ImageCache+LruCache内存缓存的源码
2.Glide源码分析
3.FREE SOLO - 自己动手实现Raft - 17 - leveldb源码分析与调试-3
4.深入源码解析LevelDB

lrucache源码分析

android volley ImageLoader+ImageCache+LruCache内存缓存的

       Volley是Google在Google I/O 上发布的一个网络框架,主要功能:web接口请求,分析网络异步下载,源码支持缓存。分析volley只是源码定义了缓存以及Request的接口,具体实现可以自己定义,分析天天养猪协议源码例如lru磁盘缓存,源码内存缓存,分析下载的ImageRequest.

       Volley的源代码里包含了一些实现,都在com.Android.volley.toolbox包里,源码包括磁盘缓存、分析json请求,源码请求。还定义了一个继承自ImageView的分析NetworkImageView,可以异步载入网络。

Glide源码分析

       深入剖析Glide源码:解析与理解其架构与机制

       1. Glide三大关键流程

       使用Glide加载时,源码主要包含三大关键流程:with、分析load、源码into。通过链式调用这些方法,能轻松完成加载任务,但背后蕴含的原理复杂且源码规模庞大。分析源码时,需抓住重点。

       1.1 with主线

       with方法是Glide中的重要接口,可传入Activity或Fragment,spring笔记源码解析与页面生命周期紧密关联。在分析中,我们曾遇到线上事故,因伙伴在with方法中传入了Context而非Activity,导致页面消失后请求仍在后台运行,最终刷新页面时找不到加载的容器直接崩溃。因此,with方法与页面生命周期息息相关。

       1.1.1 Glide创建

       通过getRetriever方法最终获得RequestManagerRetriever对象。在Glide的构造方法中,通过双检锁方式创建Glide对象。之后,调用Glide的build方法创建一个Glide实例,传入缓存和Bitmap池等对象。

       1.1.2 RequestManagerRetriever

       Glide的build方法直接创建RequestManagerRetriever对象,需requestManagerFactory参数,若未定义则默认为DEFAULT_FACTORY。获取此对象后,方便后续加载。

       1.1.3 生命周期管理

       在获取RequestManagerRetriever后,调用其get方法。当with方法传入Activity时,短资金公式源码会在子线程调用另一个get方法,而主线程中通过fragmentGet方法,创建空Fragment并同步页面生命周期。

       1.1.4 总结

       with方法主要完成:创建Glide对象,绑定页面生命周期。

       1.2 load主线

       通过with方法获得RequetManager,调用load方法创建RequestBuilder对象,将加载类型赋值给model。剩余操作由into方法负责。

       1.3 into主线

       into方法负责Glide的创建和生命周期绑定。传入ImageView,根据其scaleType属性复制RequestOption。into方法调用buildRequest返回Request,并判断是否能执行请求。执行请求或从缓存获取后回调onResourceReady。

       1.3.1 发起请求

       创建request后,调用RequetManager的track方法,执行请求并添加到请求队列。判断isPaused状态,决定是否发起网络请求。成功加载或从缓存获取后回调onResourceReady。

       1.3.2 三级缓存

       通过EngineKey获取资源,易语言查找源码从内存、活动缓存和LRUCache中查找。若未获取到,则发起网络请求。成功后加入活跃缓存并回调onResourceReady。

       1.3.3 onResourceReady

       资源加载完成或从缓存获取后,调用SingleRequest的onResourceReady方法。判断是否设置RequestListener,最终调用target的onResourceReady方法,显示。

       1.3.4 小结

       into方法主要步骤包括:创建加载请求、判断请求执行、从缓存获取资源、网络请求与资源回调。

       2. 手写简单Glide框架

       实现Glide需理解其特性,特别是生命周期绑定和三级缓存。手写时,着重实现这两点。在load方法中,支持多种资源加载,并使用RequestOption保存请求参数。在into方法中,恶性网站源码传入ImageView控件,并在buildTargetRequest方法中判断是否发起网络请求。实现三级缓存逻辑,确保加载效率。使用协程进行线程切换,提高性能。通过简单API加载本地或网络链接,实现Glide功能。

FREE SOLO - 自己动手实现Raft - - leveldb源码分析与调试-3

       leveldb的数据流动路径是单向的,从内存中的memtable流向不可变的memtable,最终写入到磁盘上的sorted table文件中。以下是几个关键状态的分析,来了解内存和磁盘上数据的分布。

       以下是分析所涉及的状态:

       1. 数据全在内存中

       随机写入条数据,观察到数据全部存储在memtable中,此时还没有进行compaction操作。

       2. 数据全在磁盘中

       写入大量数据,并等待数据完全落盘后重启leveldb。此时,数据全部存储在磁盘中,分布在不同的level中。在每个level的sstable文件中,可以看到key的最大值与最小值。

       3. 数据部分在内存中,部分在磁盘中

       随机写入条数据,发现内存中的memtable已满,触发compaction操作,数据开始写入到sstable文件。同时,继续写入的数据由于还未达到memtable上限,仍然保存在内存中。

       4. 总结

       通过观察不同数据写入量导致的数据在内存与磁盘间的流动,我们可以看到leveldb内部状态的转换。

       下篇文章将分析LRUCache数据状态的变化。敬请期待!

深入源码解析LevelDB

       深入源码解析LevelDB

       LevelDB总体架构中,sstable文件的生成过程遵循一系列精心设计的步骤。首先,遍历immutable memtable中的key-value对,这些对被写入data_block,每当data_block达到特定大小,构造一个额外的key-value对并写入index_block。在这里,key为data_block的最大key,value为该data_block在sstable中的偏移量和大小。同时,构造filter_block,默认使用bloom filter,用于判断查找的key是否存在于data_block中,显著提升读取性能。meta_index_block随后生成,存储所有filter_block在sstable中的偏移和大小,此策略允许在将来支持生成多个filter_block,进一步提升读取性能。meta_index_block和index_block的偏移和大小保存在sstable的脚注footer中。

       sstable中的block结构遵循一致的模式,包括data_block、index_block和meta_index_block。为提高空间效率,数据按照key的字典顺序存储,采用前缀压缩方法处理。查找某一key时,必须从第一个key开始遍历才能恢复,因此每间隔一定数量(block_restart_interval)的key-value,全量存储一个key,并设置一个restart point。每个block被划分为多个相邻的key-value组成的集合,进行前缀压缩,并在数据区后存储起始位置的偏移。每一个restart都指向一个前缀压缩集合的起始点的偏移位置。最后一个位存储restart数组的大小,表示该block中包含多少个前缀压缩集合。

       filter_block在写入data_block时同步存储,当一个new data_block完成,根据data_block偏移生成一份bit位图存入filter_block,并清空key集合,重新开始存储下一份key集合。

       写入流程涉及日志记录,包括db的sequence number、本次记录中的操作个数及操作的key-value键值对。WriteBatch的batch_data包含多个键值对,leveldb支持延迟写和停止写策略,导致写队列可能堆积多个WriteBatch。为了优化性能,写入时会合并多个WriteBatch的batch_data。日志文件只记录写入memtable中的key-value,每次申请新memtable时也生成新日志文件。

       在写入日志时,对日志文件进行划分为多个K的文件块,每次读写以这样的每K为单位。每次写入的日志记录可能占用1个或多个文件块,因此日志记录块分为Full、First、Middle、Last四种类型,读取时需要拼接。

       读取流程从sstable的层级结构开始,0层文件特别,可能存在key重合,因此需要遍历与查找key有重叠的所有文件,文件编号大的优先查找,因为存储最新数据。非0层文件,一层中的文件之间key不重合,利用版本信息中的元数据进行二分搜索快速定位,仅需查找一个sstable文件。

       LevelDB的sstable文件生成与合并管理版本,通过读取log文件恢复memtable,仅读取文件编号大于等于min_log的日志文件,然后从日志文件中读取key-value键值对。

       LevelDB的LruCache机制分为table cache和block cache,底层实现为个shard的LruCache。table cache缓存sstable的索引数据,类似于文件系统对inode的缓存;block cache缓存block数据,类似于Linux中的page cache。table cache默认大小为,实际缓存的是个sstable文件的索引信息。block cache默认缓存8M字节的block数据。LruCache底层实现包含两个双向链表和一个哈希表,用于管理缓存数据。

       深入了解LevelDB的源码解析,有助于优化数据库性能和理解其高效数据存储机制。

更多资讯请点击:百科

热门资讯

oopmap 源码

2024-12-29 05:16858人浏览

kstore 源码

2024-12-29 05:092051人浏览

vpack源码

2024-12-29 04:392585人浏览

slam 源码

2024-12-29 04:272664人浏览

推荐资讯

江苏南京:引导经营单位承诺无理由退货制度

中国消费者报南京讯刘琳记者薛庆元)自“满意消费长三角”“放心消费在建邺”创建活动开展以来,南京市建邺区市场监管局不断把消费者权益保护工作纵深推进。截至目前,全区已有200余家经营单位参与了放心消费创建

kstore 源码

1.kstore哪个源kstore哪个源 Kstore的源是多种多样的。 Kstore是一个广泛使用的存储和检索密钥的开源解决方案,其源头或来源取决于具体的实现和版本。一般来说,Kstore可

kstore 源码

1.kstore哪个源kstore哪个源 Kstore的源是多种多样的。 Kstore是一个广泛使用的存储和检索密钥的开源解决方案,其源头或来源取决于具体的实现和版本。一般来说,Kstore可