1.剖析Linux内核源码解读之《配置与编译》
2.如何安装Linux内核源代码安装linux内核源代码
3.Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
4.2024年度Linux6.9内核最新源码解读-网络篇-server端-第一步创建--socket
5.Linux 软件源码安装过程及一个经典的码引坑,以 Graphviz 为例
6.linux内核源码:文件系统——可执行文件的码引加载和执行
剖析Linux内核源码解读之《配置与编译》
Linux内核的配置与编译过程详解如下:配置阶段
首先,从kernel.org获取内核源代码,码引如在Ubuntu中,码引可通过`sudo apt-get source linux-$(uname -r)`获取到,码引源码存放在`/usr/src/`。码引龙之传说源码配置时,码引主要依据`arch//configs/`目录下的码引默认配置文件,使用`cp`命令覆盖`/boot/config`文件。码引配置命令有多种,码引如通过`.config`文件进行手动修改,码引但推荐在编译前进行系统配置。码引配置时注意保存配置,码引例如使用`/proc/config.gz`,码引以备后续需要。码引编译阶段
内核编译涉及多种镜像类型,如针对ARM的交叉编译,常用命令是特定的。编译过程中,可能会遇到错误,需要针对具体问题进行解决。编译完成后,将模块和firmware(体系无关)分别存入指定文件夹,记得为某些硬件添加对应的firmware文件到`lib/firmware`目录。其他内容
理解vmlinux、vmlinuz(zImage, bzImage, uImage)之间的关系至关重要。vmlinuz是压缩后的内核镜像,zImage和bzImage是vmlinuz的压缩版本,其中zImage在内存低端解压,而bzImage在高端解压。uImage是uBoot专用的,是在zImage基础上加上特定头信息的版本。如何安装Linux内核源代码安装linux内核源代码
Linux内核源代码是用于在Linux操作系统上运行应用程序和服务的开放源代码库。通过安装这些内核源代码,您将能够访问更新的功能、兼容性和性能提升。安装Linux内核源代码需要使用控制台和Linux命令行,但是如果您熟悉Linux环境、有耐心并能够一步一步执行操作,则可以轻松安装。
安装Linux内核源代码的第一步是检查系统是否满足对特定Linux版本的内核源代码的依赖条件,例如检查是否已安装必要的软件包、依赖项等。可以使用 apt-get或 yum 命令查找所需的软件包,并下载并安装它们。如果系统不满足此要求,可能需要进行一些额外的配置,例如安装其他脚本、升级操作系统或安装相应的 hot fix 。
第二步是从内核代码源下载最新的Linux内核发行版本。此源可从 Linux Kernel Archives (/socket.c文件的位置,无论内核版本如何,彩虹易支付源码2022都会调用__sys_socket_create函数来实际创建套接字,它接受地址族、类型、协议和结果指针。创建失败时,会返回错误指针。
在socket创建过程中,参数解析至关重要:网络命名空间(net):隔离网络环境,每个空间有自己的配置,如IP地址和路由。
协议族(family):如IPv4(AF_INET)或IPv6(AF_INET6)。
套接字类型(type):如流式(SOCK_STREAM)或数据报(SOCK_DGRAM)。
协议(protocol):如TCP(IPPROTO_TCP)或UDP(IPPROTO_UDP),默认值自动选择。
结果指针(res):指向新创建的socket结构体。
内核标志(kern):区分用户空间和内核空间的socket。
__sock_create函数处理创建逻辑,调用sock_map_fd映射文件描述符,支持O_CLOEXEC和O_NONBLOCK选项。每个网络协议族有其特有的create函数,如inet_create处理IPv4 TCP创建。 在内核中,安全模块如LSM会通过security_socket_create进行安全检查。sock_alloc负责内存分配和socket结构初始化,协议族注册和动态加载在必要时进行。RCU机制保护数据一致性,确保在多线程环境中操作的正确性。 理解socket_wq结构体对于异步IO至关重要,它协助socket管理等待队列和通知。例如,在TCP协议族的inet_create函数中,会根据用户请求找到匹配的协议,并设置相关的操作集和数据结构。 通过源码,我们可以看到socket和sock结构体的关系,前者是用户空间操作的抽象,后者是内核处理网络连接的实体。理解这些细节有助于我们更好地编写C++网络程序。 此外,原始套接字(如TCP、UDP和CMP)的应用示例,以及对不同协议的深入理解,如常用的IP协议、专用协议和实验性协议,是进一步学习和实践的重要部分。Linux 软件源码安装过程及一个经典的坑,以 Graphviz 为例
Linux 系统中,源码安装软件是一种灵活且便于管理的方法。本文以 Graphviz 为例,详解从下载、解压到安装的源码时代全国校区全过程,并针对可能遇到的常见问题提供解决方案。安装步骤如下:
首先,在 Linux ubuntu 系统中下载 Graphviz 的压缩包。
接着,使用命令进行解压,命令中包含解析文件、指定文件格式和解压过程显示。解压后,软件位于 /usr/local 目录下。
随后,分析环境。在软件包内,会发现一个名为 configure 的文件,用于适应不同环境,生成可执行程序,并检查系统是否具备必要的外部工具与组件。通过 --prefix 参数,便于软件的卸载与移植。
生成程序阶段,使用命令编译可执行程序。在执行过程中,若遇到错误如“ld: can't find -lperl”,说明系统缺少某些动态链接库,需下载并安装这些库。随后再次安装可执行程序,至此成功完成安装。
值得注意的是,若在 Python 缺少 lib.so 文件时,下载 so 文件后,可能需要对 Python 进行重新编译。Makefile 是 configure 生成的文件,描述各部件间的联系与依赖,指导 make 命令编译最终程序。打包后的源代码通常包含一个特殊的 make 目标安装程序,用于将生成的可执行程序安装至系统目录,尤其是 /usr/local/bin 目录下。为了获得执行权限,使用 sudo 命令。
在源码安装过程中,可能会遇到编译链接失败的问题,这通常是由于缺少动态链接库所导致。C 程序执行过程包括编译、链接、生成可执行文件等步骤。在 Linux 系统中安装源码时,软件依赖系统动态链接库。因此,遇到安装相关问题时,多数情况是由于缺乏动态链接库。
综上所述,通过遵循上述步骤与注意事项,房屋出租app源码可以顺利地在 Linux 系统中完成 Graphviz 的源码安装,解决常见的安装问题。
linux内核源码:文件系统——可执行文件的加载和执行
本文深入探讨Linux内核源码中文件系统中可执行文件的加载与执行机制。与Windows中的PE格式和exe文件不同,Linux采用的是ELF格式。尽管这两种操作系统都允许用户通过双击文件来执行程序,但Linux的实现方式和底层操作有所不同。
在Linux系统中,双击可执行文件能够启动程序,这背后涉及一系列复杂的底层工作。首先,我们简要了解进程间的数据访问方式。在用户态运行时,ds和fs寄存器指向用户程序的数据段。然而,当代码处于内核态时,ds指向内核数据段,而fs仍然指向用户态数据段。为了确保正确访问不同态下的数据,需要频繁地调整fs寄存器的值。
当用户输入参数时,这些信息需要被存储在进程的内存空间中。Linux为此提供了KB的个页面内存空间,用于存放用户参数和环境变量。通过一系列复制操作,参数被安全地存放到了进程的内存中。尽管代码实现可能显得较为复杂,但其核心功能与传统复制函数(如memcpy)相似。
为了理解参数和环境变量的处理,我们深入探讨了如何通过不同fs值来访问内存中的变量。argv是一个指向参数的指针,argv*和argv**指向不同的地址,它们可能位于内核态或用户态。在访问这些变量时,需要频繁地切换fs值,以确保正确读取内存中的数据。通过调用set_fs函数来改变fs值,并在读取完毕后恢复,实现不同态下的数据访问。
在Linux的加载过程中,参数和环境变量的处理涉及到特定的算法和逻辑,以确保正确解析和执行程序。例如,通过检查每个参数是否为空以及参数之间的空格分隔,来计算参数的数量。同时,文件的头部信息对于识别文件类型至关重要。早期版本的Linux文件头部信息相当简单,仅包含几个字段。这些头部信息为操作系统提供了识别文件类型的基础。
为了实现高效文件执行,盗u源码后门文件Linux使用了一系列的内存布局和管理技术。在执行文件时,操作系统负责将参数列表、环境变量、栈、数据段和代码段等组件放入进程的内存空间。这种布局确保了程序能够按照预期运行。
最后,文章提到了一些高级技术,如线程切换、内存管理和文件系统操作,这些都是Linux内核源码中关键的部分。尽管这些技术在日常编程中可能不常被直接使用,但它们对于理解Linux的底层工作原理至关重要。通过深入研究Linux内核源码,开发者能够更全面地掌握操作系统的工作机制,从而在实际项目中提供更高效、更安全的解决方案。
Linux下源码安装的经验详解
在linux下安装软件,难免会碰到需要源码安装的,而就是这简简单单的./configure、make、sudo make install三步,却让不少人头疼不已,这里以安装X为例具体介绍下我在安装时的一点小经验,以便共同学习,共同进步!
首先,我们要做些准备工作,源码安装少不了这几个工具pkg-config、libtool、autoconf和automake(当然,还有更基础的,像zlib、m4等,这里就略过啦),其中,pkg-config是相对比较重要的,它就是向configure程序提供系统信息的程序,如软件的版本、库的版本以及库的路径等信息,这些只是在编译期间使用。你可以打开/usr/lib/pkgconfig下任意一个.pc文件,就会发现类似下面的信息(X的pc文件):
prefix=/usr
exec_prefix=${ prefix}
libdir=${ exec_prefix}/lib
includedir=${ prefix}/include
xthreadlib=-lpthread
Name: X
Description: X Library
Version: 1.3.3
Requires: xproto kbproto
Requires.private: xcb = 1.1.
Cflags: -I${ includedir}
Libs: -L${ libdir} -lX
Libs.private: -lpthread
configure就是靠着这些信息来判断软件版本是否符合要求的。接着来看看pkg-config是怎样工作的,缺省情况下,pkg-config首先在usr/lib/pkgconfig/中查找相关包(譬如x)对应的相应的文件(x.pc),若没有找到,它也会到PKG_CONFIG_PATH这个环境变量所指定的路径下去找,若是还没有找到,它就会报错。所以这里就可以得到一些解决configure时提示**库未找到的办法了,先用命令ldconfig -p | grep 库名来分析该库是否安装及其路径,若返回空,则说明该库确实未安装,否则,可以根据该命令的返回结果找到库的安装地点,然后设置其环境变量,命令如下:
export PKG_CONFIG_PATH=软件位置/lib/pkgconfig:$PKG_CONFIG_PATH,这里有个常识,软件安装后,.pc文件都是在安装目录下的lib/pkgconf中的。这样只会在当前命令窗口有效,当然,你也可以修改home文件夹下的.bashrc文件(带.的文件为隐藏文件,可以用命令vi .bashrc编辑),在文件末尾加上上面那句命令,重新登录即可。其他的几个在linux下也是不可或缺的,libtool为管理library时使用,没装的话错误提示如下:possibly undefined macro:AC_PROG_LIBTOOL。而autoconf和automake可以用于在某些没有configure的文件的源码包安装时使用(pixman就是个典型的例子,安装了二者后直接./autogen.sh就可以安装了)。
准备工作做好后,就可以安装了,具体全部命令如下:
tar vxf libX-6.2.1.tar.gz
cd libX-6.2.1
mkdir X-build
cd X-build
../configure prefix=/usr/local/XR6
make
echo $
sudo make install
这里有一些好的安装习惯可以积累一下:1、建立一个临时编译目录,本例中为X-build,这样可以再安装完成后删除该目录,进而可以节省空间,而且保持了源码目录的整洁;2、安装到指定目录,本例中为/usr/local/XR6,最好把几个相关的安装在同一文件夹下,如这里的XR6文件夹,这样便于管理,否则全部默认安装在/usr/local下,很杂乱;3、编译完成后做检查,本例为echo $,表示检查上一条命令的退出状态,程序正常退出返回0,错误退出返回非0,也可以使用make check,主要为了防止make失败后直接install,进而出现了一些莫名其妙的错误。这里还介绍一种更方便快捷的安装方法,用将安装命令连接起来,如../configure prefix=**makesudo make install,这样,只有在前面的命令执行正确的情况下,后面的任务才会执行,多方便!
除此之外,安装之前可以阅读下源码包中的readme和install等文档,往往有所需软件及其下载地址,还包括一些安装技巧和配置选项。另外,在configure前,先输入configure help,可以查看有哪些选项可以添加。还有几个关系安装成功的东西就是ldconfig了,在安装时如果提示找不到某个库或者在编译时提示找不到**.so文件,就要用到它了,最简单的解决办法就是sudo gedit /etc/ld.so.conf,在文件中加入**.so文件所在路径,再运行一下ldconfig就可以了,但是我对这个东西有阴影,不知道是因为用了虚拟机还是其他的原因,有7、8次我在运行完ldconfig后,Ubuntu就没办法打开任何窗口了,直接关机重启就更是进不去系统了,崩溃之,不知道有没有高手有解决办法。在这里提供一种代替ldconfig的办法,就是export LD_LIBRARY_PATH=*.so文件地址:$LD_LIBRARY_PATH,用它我就舒心多了,也就是麻烦点,哥忍了,总比系统崩溃强多了吧,呵呵!其实,在configure时碰到问题,你应该庆幸,因为你可以根据它很明显的提示找到缺失的东西装上,在配置下pkgconfig和ldconfig基本上就可以搞定了,但是make的时候就没那么简单了。
编译时提示最多的就是**东西未找到了,要么是库文件,要么是头文件,库文件用上面的ldconfig基本上就可以搞定,头文件的话需要配置包含的路径,和库的类似,命令如下:
export LD_INCLUDE_PATH=/usr/local/include:$LD_INCLUDE_PATH
在这个时候最重要的就是淡定了,循着丫的error往上找,像No such file or directory这样的错误提示肯定就在附近,找到了,include之就可以咯!
源码方式安装特定版本 Linux Kernel 步骤
源码方式安装特定版本Linux Kernel 步骤详解
本文将详细介绍通过源码方式安装指定版本Linux Kernel(本文以6.2.0版本为例)的步骤。在安装过程中,您需要下载软件仓库(upstream),配置内核以适应特定需求,并最终完成内核的安装。此外,您将学习如何更新Grub配置以确保系统使用新内核启动。
安装前准备:确认操作系统为RHEL(Linux)环境,并拥有root权限。所有命令默认在root权限下执行。确保基础的Linux开发工具已安装,安装过程中如需补充工具则会自动进行。
步骤1:下载并切换到特定版本的Linux Kernel仓库
1.1 下载Linux Kernel仓库至/home目录,后续命令将自动安装于适当位置,无需更改文件名。对于6.2.0版本,无需特别修改文件名。
步骤2:配置内核以自定义属性
2.1 使用配置工具自定义内核属性。有多种方式:完全重新配置或导入并修改之前的配置文件(.config),最终生成新的配置文件(.config),旧配置文件则命名为(.config.old)。
步骤3:编译Linux Kernel生成bzImage文件
步骤4:默认安装Linux Kernel模块,存储于/lib/modules文件夹。
步骤5:安装Linux Kernel,自动安装至/boot文件夹下,包含System.map-6.2.0-upstream、initramfs-6.2.0-upstream.img、vmlinuz-6.2.0-upstream,更新链接关系至新生成文件。
更新Grub配置
1.1 设置启动内核,使用--set-default参数后跟启动的Linux Kernel版本。
1.2 选择启动cmdline(非必要),使用--remove-args和--args参数添加或删除cmdline参数。
1.3 查看Grub配置。
1.4 生成新的Grub配置文件,位置根据服务器启动方式决定。
重新启动计算机并配置Linux Kernel
若服务器包含其他Linux Kernel版本,指定特定版本内核并设置启动命令行参数。
1.1 修改启动命令行参数(若需要)。
1.2 重新安装Linux Kernel,删除旧版本文件。操作原因:安装过程自动链接相关文件,重新设置链接关系。删除旧文件标记为.old。
1.3 重新生成/boot/grub/grubenv文件,并验证配置。
1.4 重启计算机。
检查安装结果
通过命令检查Linux Kernel版本,确认安装过程无误。
本文详细介绍了源码方式安装特定版本Linux Kernel的完整步骤,包括下载仓库、配置内核、编译及安装内核,以及更新Grub配置。最后,通过重启计算机验证安装结果。希望此指南能够帮助您顺利完成Linux Kernel的安装。
Linux环境源码安装GCC/CMAKE
为了在Linux环境下源码安装GCC和CMAKE,我们需要遵循详细的步骤和策略。对于GCC源码,我们可以从GitHub-gcc-mirror/gcc获取4.4.6版本。接下来,进入下载后的GCC源代码目录。
在配置和编译GCC时,首先应该明确指定安装的目录,避免冲突。可能在配置脚本时遇到错误,这时候需要解决依赖项问题。分别安装MPFR、MPC和任何其他必要的依赖库。对于GCC8.3及以上版本,内部集成脚本能够简便地获取这些依赖库。
安装库路径后,再次执行配置文件,加入库路径参数,确保安装的每个步骤顺利进行。配置完成后,整个GCC安装过程即宣告成功。
为了测试GCC是否正确安装,遵循指导进行验证。
CMake的安装同样关键,可以通过直接指定需要的GCC版本来简化安装流程。在CMake命令行参数中指定GCC路径也是可行的。
在运行GCC4.4.6编译的程序时,可能存在系统路径问题,这是因为我们选择的是不替换安装方式。因此,需要额外操作,确保所需的库被正确添加到路径中。
遇到GCC多版本引起的ABI兼容问题时,如果编译链接过程中遇到“undefined reference to"“std::__cxx ***””错误,这提示可能是C++ ABI问题。处理方法是,针对GCC5.1之前版本发布的libstdc++中新增的ABI,通过添加定义-D_GLIBCXX_USE_CXX_ABI=0来解决该问题。
对于GDB版本的问题,特别在GCC.1的使用中,要求C++的编译器,导致了旧版本GDB启动出现Segment Fault。解决办法是升级GDB版本。
附录中提供了一些额外资源,例如Mingw下载,适用于位和位Windows的最新版x_-win-sjlj;CMake下载链接以及GCC的GitHub地址等。遵循这些资源和提示,能够帮助用户顺畅进行Linux环境下的GCC和CMAKE的源码安装与配置。
linux0.源码分析-fork进程
在操作系统中,Linux0.源码中的fork函数执行流程分为启动和系统调用两个阶段。启动阶段首先在init/main.c中执行init用于启动shell,让用户执行命令。
在include/unistd.h中定义了宏,表示将__NR_fork的值复制给eax寄存器,并将_res与eax绑定。使用int 0x中断后,系统调用函数system_call被调用,从sys_call_table中找到对应的函数执行。fork函数执行时,操作系统会在内核栈里保存相关寄存器,准备中断返回。
接着,操作系统通过int调用system_call,在kernel/system_call.s中执行call _sys_call_table(,%eax,4)指令。内核栈中,因为是段内跳转,所以cs不需要入栈。ip指向call指令的下一句代码。执行call指令进入系统调用表。
在includ/linux/sys.h中,系统调用表是一个数组,根据eax即系统函数编号找到对应的函数执行。对于fork,__NR_fork值2被放入eax寄存器,%eax * 4找到sys_fork。执行sys_fork后,调用find_empty_process函数找到可用的进程号,并放入eax寄存器返回。
接着,系统调用执行copy_process函数建立新进程结构体并复制数据。新进程的ip出栈,执行完copy_process后,系统调用返回,内核栈状态改变。此阶段最后通过iret指令弹出寄存器,恢复中断前状态。
总结,fork函数通过复制当前进程结构体、处理信号并初始化新进程,实现父进程与子进程的创建与共享。子进程返回值为0,父进程返回新子进程的pid。通过fork函数的执行,操作系统能够高效地创建进程,实现多任务处理。