1.字符设备中的几个函数分析
2.溢出深入浅出Linux程序堆栈溢出linux程序堆栈
字符设备中的几个函数分析
1.在内核中, dev_t 类型(在 <linux/types.h>中定义)用来持有设备编号 — 主次部分都包括.其中dev_t 是 位的量, 位用作主编号, 位用作次编号
1 #ifndef _LINUX_TYPES_H
2 #define _LINUX_TYPES_H
3
4 #include <asm/types.h>
5
6 #ifndef __ASSEMBLY__
7 #ifdef __KERNEL__
8
9 #define DECLARE_BITMAP(name,bits) /
unsigned long name[BITS_TO_LONGS(bits)]
#endif
#include <linux/posix_types.h>
#ifdef __KERNEL__
typedef __u __kernel_dev_t;
typedef __kernel_fd_set fd_set;
typedef __kernel_dev_t dev_t; //用来持有设备编号的主次部分
typedef __kernel_ino_t ino_t;
typedef __kernel_mode_t mode_t;
...
2.在 <linux/kdev_t.h>中的一套宏定义. 为获得一个 dev_t 的主或者次编号, 使用:
2.1设备编号的内部表示
MAJOR(dev_t dev);
MINOR(dev_t dev);
2.在有主次编号时, 需要将其转换为一个 dev_t, 可使用:
MKDEV(int major, int minor);
在linux/kdev_t.h中有下了内容
...
4 #define MINORBITS
5 #define MINORMASK ((1U << MINORBITS) - 1)
6
7 #define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
8 #define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
9 #define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))//高为表示主设备号,低位表示次设备号
...
3.分配和释放设备编号register_chrdev_region函数
下面摘自文件fs/char_dev.c内核源代码
/
*** register_chrdev_region() - register a range of device numbers
* @from: the first in the desired range of device numbers; must include
* the major number.
* @count: the number of consecutive device numbers required
* @name: the name of the device or driver.
*
* Return value is zero on success, a negative error code on failure.
*/
int register_chrdev_region(dev_t from, unsigned count, const char *name)
{
struct char_device_struct *cd;
dev_t to = from + count; //计算分配号范围中的最大值+=
dev_t n, next;
for (n = from; n < to; n = next) { /*每次申请个设备号*/
next = MKDEV(MAJOR(n)+1, 0);/*主设备号加一得到的设备号,次设备号为0*/
if (next > to)
next = to;
cd = __register_chrdev_region(MAJOR(n), MINOR(n),
next - n, name);
if (IS_ERR(cd))
goto fail;
}
return 0;
fail:/*当一次分配失败的时候,释放所有已经分配到地设备号*/
to = n;
for (n = from; n < to; n = next) {
next = MKDEV(MAJOR(n)+1, 0);
kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
}
return PTR_ERR(cd);
}
这里, from是要分配的起始设备编号. from 的次编号部分常常是 0, 但是没有要求是那个效果. count是你请求的连续设备编号的总数. 注意, 如果count 太大, 要求的范围可能溢出到下一个次编号;但是只要要求的编号范围可用, 一切都仍然会正确工作. 最后, name 是应当连接到这个编号范围的设备的名子; 它会出现在 /proc/devices 和 sysfs 中.如同大部分内核函数, 如果分配成功进行, register_chrdev_region 的返回值是 0. 出错的情况下, 返回一个负的错误码, 不能存取请求的区域.
4.下面是char_device_struct结构体的信息
fs/char_dev.c
static struct char_device_struct {
struct char_device_struct *next; // 指向散列冲突链表中的下一个元素的指针
unsigned int major; // 主设备号
unsigned int baseminor; // 起始次设备号
int minorct; // 设备编号的范围大小
const char *name; // 处理该设备编号范围内的设备驱动的名称
struct file_operations *fops; // 没有使用
struct cdev *cdev; /* will die指向字符设备驱动程序描述符的指针*/
} *chrdevs[MAX_PROBE_HASH];
/
** Register a single major with a specified minor range.
*
* If major == 0 this functions will dynamically allocate a major and return
* its number.
*
* If major > 0 this function will attempt to reserve the passed range of
* minors and will return zero on success.
*
* Returns a -ve errno on failure.
*/
/
*** 该函数主要是注册注册注册主设备号和次设备号
* major == 0此函数动态分配主设备号
* major > 0 则是申请分配指定的主设备号
* 返回0表示申请成功,返 回负数说明申请失败
*/
static struct char_device_struct
*__register_chrdev_region(unsigned int major, unsigned int baseminor,
int minorct, const char *name)
{ /*以下处理char_device_struct变量的初始化和注册*/
struct char_device_struct *cd, **cp;
int ret = 0;
int i;
//kzalloc()分配内存并且全部初始化为0,
cd = kzalloc(sizeof(struct char_device_struct), GFP_KERNEL);
if (cd == NULL)
//ENOMEM定义在include/asm-generic/error-base.h中,
// #define ENOMEM /* Out of memory */
return ERR_PTR(-ENOMEM);
mutex_lock(&chrdevs_lock);
/* temporary */
if (major == 0) { //下面动态申请主设备号
for (i = ARRAY_SIZE(chrdevs)-1; i > 0; i—) {
//ARRAY_SIZE是定义为ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
//#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
if (chrdevs[i] == NULL)
//chrdevs是内核中已经注册了的设备好设备的一个数组
break;
}
if (i == 0) {
ret = -EBUSY;
goto out;
}
major = i;
ret = major;//这里得到一个位使用的设备号
}
//下面四句是对已经申请到的设备数据结构进行填充
cd->major = major;
cd->baseminor = baseminor;
cd->minorct = minorct;/*申请设备号的个数*/
strlcpy(cd->name, name, sizeof(cd->name));
/*以下部分将char_device_struct变量注册到内核*/
i = major_to_index(major);
for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
if ((*cp)->major > major || //chardevs[i]设备号大于主设备号
((*cp)->major == major &&
(((*cp)->baseminor >= baseminor) || //chardevs[i]主设备号等于主设备号,并且此设备号大于baseminor
((*cp)->baseminor + (*cp)->minorct > baseminor))))
break;
//在字符设备数组中找到现在注册的设备
/* Check for overlapping minor ranges. */
if (*cp && (*cp)->major == major) {
int old_min = (*cp)->baseminor;
int old_max = (*cp)->baseminor + (*cp)->minorct - 1;
int new_min = baseminor;
int new_max = baseminor + minorct - 1;
/* New driver overlaps from the left. */
if (new_max >= old_min && new_max <= old_max) {
ret = -EBUSY;
goto out;
}
/* New driver overlaps from the right. */
if (new_min <= old_max && new_min >= old_min) {
ret = -EBUSY;
goto out;
}
}
/*所申请的设备好号能够满足*/
cd->next = *cp;/*按照主设备号从小到大顺序排列*/
*cp = cd;
mutex_unlock(&chrdevs_lock);
return cd;
out:
mutex_unlock(&chrdevs_lock);
kfree(cd);
return ERR_PTR(ret);
}
以上程序大体上分为两个步骤:
1.char_device_struct类型变量的分配以及初始化~行
2.将char_device_struct变量注册到内核,行页到行
1.char_device_struct类型变量的分配以及初始化
(1)首先,调用 kmalloc 分配一个 char_device_struct 变量cd。
检查返回值,linux卸载samba源码进行错误处理。
(2)将分配的char_device_struct变量的内存区清零memset。
(3)获取chrdevs_lock读写锁,并且关闭中断,禁止内核抢占,write_lock_irq。
(4)如果传入的移码为0源码主设备号major不为0,跳转到第(7)步。
(5)这时,major为0,首先需要分配一个合适的主设备号。
将 i 赋值成 ARRAY_SIZE(chrdevs)-1,其中的 chrdevs 是包含有个char_device_struct *类型的数组,
然后递减 i 的值,直到在chrdevs数组中出现 NULL。当chrdevs数组中不存在空值的时候,
ret = -EBUSY; goto out;
(6)到达这里,就表明主设备号major已经有合法的值了,接着进行char_device_struct变量的承接出货指标源码初始化。
设置major, baseminor, minorct以及name。
2.将char_device_struct变量注册到内核
(7)将 i 赋值成 major_to_index(major)
将major对取余数,得到可以存放char_device_struct在chrdevs中的索引
(8)进入循环,在chrdevs[i]的链表中找到一个合适位置。
退出循环的条件:
(1)chrdevs[i]为空。
(2)chrdevs[i]的主设备号大于major。
(3)chrdevs[i]的主设备号等于major,但是次设备号大于等于baseminor。
注意:cp = &(*cp)->next,cp是char_device_struct **类型,(*cp)->next是一个char_device_struct
*类型,所以&(*cp)->next,dfq手游源码就得到一个char_device_struct **,并且这时候由于是指针,所以
对cp赋值,就相当于对链表中的元素的next字段进行操作。
(9)进行冲突检查,因为退出循环的情况可能造成设备号冲突(产生交集)。
如果*cp不空,并且*cp的major与要申请的major相同,此时,如果(*cp)->baseminor < baseminor + minorct,
就会发生冲突,因为和已经分配了的准准app源码设备号冲突了。出错就跳转到ret = -EBUSY; goto out;
()到这里,内核可以满足设备号的申请,将cd链接到链表中。
()释放chrdevs_lock读写锁,开中断,开内核抢占。
()返回加入链表的char_device_struct变量cd。
()out出错退出
a.释放chrdevs_lock读写锁,开中断,开内核抢占。
b.释放char_device_struct变量cd,kfree。
c.返回错误信息
下面程序出自fs/char_dev.c
动态申请设备号
...
/
*** alloc_chrdev_region() - register a range of char device numbers
* @dev: output parameter for first assigned number
* @baseminor: first of the requested range of minor numbers
* @count: the number of minor numbers required
* @name: the name of the associated device or driver
*
* Allocates a range of char device numbers. The major number will be
* chosen dynamically, and returned (along with the first minor number)
* in @dev. Returns zero or a negative error code.
*/
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,
const char *name)
{
/* dev:
仅仅作为输出参数,成功分配后将保存已分配的第一个设备编号。
baseminor:
被请求的第一个次设备号,通常是0。
count:
所要分配的设备号的个数。
name:
和所分配的设备号范围相对应的设备名称。
b.返回值:
成功返回0,失败返回负的错误编码
*/
struct char_device_struct *cd;
cd = __register_chrdev_region(0, baseminor, count, name);
if (IS_ERR(cd))
return PTR_ERR(cd);
*dev = MKDEV(cd->major, cd->baseminor);
return 0;
}
...
溢出深入浅出Linux程序堆栈溢出linux程序堆栈
溢出深入浅出 Linux 程序堆栈溢出
Linux是一种被广泛使用的位操作系统,它有几个特别之处:它不仅具有可伸缩性,而且可以运行在现代大多数主流计算机中。堆栈溢出是Linux安全最为关键的问题之一,它可能会破坏操作系统的稳定性,导致操作系统的崩溃。
堆栈溢出也被称作缓冲区溢出。当程序试图将更多的数据存储在比堆栈空间更小的内存位置时,就会发生堆栈溢出。其原理是当程序向堆栈中写入数据时,如果数据大小超过了预先分配的堆栈空间,它就会覆盖堆栈中其他重要数据,改变原来的值,甚至会导致操作系统的崩溃。
在Linux中,最常见的溢出攻击方式是攻击者写一个缓冲区来覆盖内存里的指令指针指向一个shell代码,从而会让攻击者拥有攻击者的权限,在某些linux系统里(CentOS),会触发一个叫做“核心转储”的功能,当操作系统发生严重错误时,系统会把系统信息写入到系统指定位置(/var/log/messages),以方便系统管理员检查系统错误日志,这件事情也说明溢出攻击会在系统日志中留下一个踪迹。
要防止这种攻击,有一些技术可以帮助我们,比如在编译时使用Compiler-based Security技术,可以让编译器发现潜在的溢出漏洞,还有一些函数库,可以让程序员将数据与缓冲区比较,避免意外修改程序存储的内容。建议通过炎黄源码安全扫描器可以实时扫描源程序,自动发现潜在的溢出漏洞。
另一方面,在Linux系统中程序员也可以进行一些检查,比如可以在调用函数之前先检查用户输入的大小,然后根据检查结果在程序中使用安全函数,例如strlcpy,snprintf,strncpy,它们可以帮助程序员检查和控制数据是否超出了缓冲区的大小,从而避免堆栈溢出的攻击。
总之,Linux堆栈溢出是一个敏感的安全问题,可以帮助Linux程序员和管理员构建更强大的安全防护系统,来防止攻击者对系统造成损害。