Python实现十大经典排序算法--python3实现(以及全部的排序排序算法分类)
我简单的绘制了一下排序算法的分类,蓝色字体的源码排序算法是我们用python3实现的,也是图片比较常用的排序算法。
一、排序常用排序算法
1、源码码支付免签系统源码冒泡排序——交换类排序
1.1 简介
冒泡排序(Bubble Sort)是图片一种简单直观的排序算法。它重复地走访过要排序的排序数列,一次比较两个元素,源码如果他们的图片顺序错误就把他们交换过来。最快:当输入的排序数据已经是正序时;最慢:当输入的数据是反序时。
1.2 源码
1.3 效果
2、源码快速排序——交换类排序
2.1 简介
快速排序是图片由东尼·霍尔所发展的一种排序算法。在平均状况下,排序排序 n 个项目要 Ο(nlogn) 次比较。源码特点是选基准、分治、递归。
2.2 源码
2.3 快排简写
2.4 效果
3、选择排序——选择类排序
3.1 简介
选择排序是一种简单直观的排序算法。无论什么数据进去都是 O(n²) 的时间复杂度。
3.2 源码
3.3 效果
4、堆排序——选择类排序
4.1 简介
堆排序(Heapsort)是jsp源码双鱼指利用堆这种数据结构所设计的一种排序算法。分为两种方法:大顶堆、小顶堆。平均时间复杂度为 Ο(nlogn)。
4.2 源码
4.3 效果
5、插入排序——插入类排序
5.1 简介
插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了。工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
5.2 源码
5.3 效果
6、希尔排序——插入类排序
6.1 简介
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。基于插入排序的原理改进方法。
6.2 源码
6.3 效果
7、归并排序——归并类排序
7.1 简介
归并排序(Merge sort)采用分治法(Divide and Conquer)策略,是一种典型的分而治之思想的算法应用。
7.2 源码
7.3 效果
8、计数排序——分布类排序
8.1 简介
计数排序的核心在于将输入的数据值转化为键存储在额外的数组空间中。要求输入的数据必须是有确定范围的整数,运行时间是taotao项目源码 Θ(n + k),不是比较排序,性能快于比较排序算法。
8.2 源码
8.3 效果
9、基数排序——分布类排序
9.1 简介
基数排序是一种非比较型整数排序算法,可以用来排序字符串或特定格式的浮点数。
9.2 源码
9.3 效果
、桶排序——分布类排序
.1 简介
桶排序是计数排序的升级版,它利用了函数的映射关系,高效与否的关键在于映射函数的确定。桶排序关键在于均匀分配桶中的元素。
.2 源码
.3 效果
三、Github源码分享
写作不易,分享的代码在 github.com/ShaShiDiZhua...
请点个关注,点个赞吧!!!
易语言如何实现定时自动按顺序选择文件?
.版本 2
.支持库 EThread
.支持库 spec
.程序集 窗口程序集_启动窗口
.子程序 _按钮1_被单击
启动线程 (&子程序1, , )
.子程序 子程序1
遍历文件 (“C:\Users\Administrator\Desktop\新建文件夹\”)
.子程序 遍历文件, 文本型
.参数 遍历目录, 文本型
.局部变量 临时_文件, 文本型
.局部变量 临时_创建时间, 文本型
.局部变量 数组1, 文本型, , "0"
.局部变量 数组2, 整数型, , "0"
.局部变量 数组3, 整数型, , "0"
.局部变量 i, 整数型
.局部变量 s, 整数型
.局部变量 文本, 文本型
临时_文件 = 寻找文件 (遍历目录 + “\*.*”, )
.判断循环首 (临时_文件 ≠ “”)
临时_文件 = 寻找文件 (, )
.如果真 (临时_文件 ≠ “”)
文件_取时间 (遍历目录 + 临时_文件, 临时_创建时间)
' 调试输出 (临时_文件, 到长整数 (时间_取现行时间戳 (真)) - 时间_北京转格林威治 (到时间 (临时_创建时间)))
加入成员 (数组1, 临时_文件)
加入成员 (数组2, 到长整数 (时间_取现行时间戳 (真)) - 时间_北京转格林威治 (到时间 (临时_创建时间)))
加入成员 (数组3, 到长整数 (时间_取现行时间戳 (真)) - 时间_北京转格林威治 (到时间 (临时_创建时间)))
.如果真结束
.判断循环尾 ()
数组排序 (数组3, 真)
.计次循环首 (取数组成员数 (数组3), i)
.计次循环首 (取数组成员数 (数组2), s)
.如果真 (数组3 [i] = 数组2 [s])
文件_取时间 (遍历目录 + 数组1 [s], 临时_创建时间)
调试输出 (数组1 [s], 临时_创建时间)
文本 = 文本 + 数组1 [s] + #换行符
数组2 [s] =
.如果真结束
.计次循环尾 ()
.计次循环尾 ()
返回 (文本)
STL 源码剖析:sort
我大抵是太闲了。
更好的阅读体验。
sort 作为最常用的 STL 之一,大多数人对于其了解仅限于快速排序。
听说其内部实现还包括插入排序和堆排序,于是nx ug 源码很好奇,决定通过源代码一探究竟。
个人习惯使用 DEV-C++,不知道其他的编译器会不会有所不同,现阶段也不是很关心。
这个文章并不是析完之后的总结,而是边剖边写。不免有个人的猜测。而且由于本人英语极其差劲,大抵会犯一些憨憨错误。
源码部分sort
首先,在 Dev 中输入以下代码:
然后按住 ctrl,鼠标左键sort,就可以跳转到头文件 stl_algo.h,并可以看到这个:
注释、模板和函数参数不再解释,我们需要关注的是函数体。
但是,中间那一段没看懂……
点进去,是一堆看不懂的#define。
查了一下,感觉这东西不是我这个菜鸡能掌握的。
有兴趣的物种识别源码 戳这里。
那么接下来,就应该去到函数__sort 来一探究竟了。
__sort
通过同样的方法,继续在stl_algo.h 里找到 __sort 的源代码。
同样,只看函数体部分。
一般来说,sort(a,a+n) 是对于区间 [公式] 进行排序,所以排序的前提是 __first != __last。
如果能排序,那么通过两种方式:
一部分一部分的看。
__introsort_loop
最上边注释的翻译:这是排序例程的帮助程序函数。
在传参时,除了首尾迭代器和排序方式,还传了一个std::__lg(__last - __first) * 2,对应 __depth_limit。
while 表示,当区间长度太小时,不进行排序。
_S_threshold 是一个由 enum 定义的数,好像是叫枚举类型。
当__depth_limit 为 [公式] 时,也就是迭代次数较多时,不使用 __introsort_loop,而是使用 __partial_sort(部分排序)。
然后通过__unguarded_partition_pivot,得到一个奇怪的位置(这个函数的翻译是无防护分区枢轴)。
然后递归处理这个奇怪的位置到末位置,再更新末位置,继续循环。
鉴于本人比较好奇无防护分区枢轴是什么,于是先看的__unguarded_partition_pivot。
__unguarded_partition_pivot
首先,找到了中间点。
然后__move_median_to_first(把中间的数移到第一位)。
最后返回__unguarded_partition。
__move_median_to_first
这里的中间数,并不是数列的中间数,而是三个迭代器的中间值。
这三个迭代器分别指向:第二个数,中间的数,最后一个数。
至于为什么取中间的数,暂时还不是很清楚。
`__unguarded_partition`
传参传来的序列第二位到最后。
看着看着,我好像悟了。
这里应该就是实现快速排序的部分。
上边的__move_median_to_first 是为了防止特殊数据卡 [公式] 。经过移动的话,第一个位置就不会是最小值,放在左半序列的数也就不会为 [公式] 。
这样的话,__unguarded_partition 就是快排的主体。
那么,接下来该去看部分排序了。
__partial_sort
这里浅显的理解为堆排序,至于具体实现,在stl_heap.h 里,不属于我们的讨论范围。
(绝对不是因为我懒。)
这样的话,__introsort_loop 就结束了。下一步就要回到 __sort。
__final_insertion_sort
其中某常量为enum { _S_threshold = };。
其中实现的函数有两个:
__insertion_sort
其中的__comp 依然按照默认排序方式 < 来理解。
_GLIBCXX_MOVE_BACKWARD3
进入到_GLIBCXX_MOVE_BACKWARD3,是一个神奇的 #define:
其上就是move_backward:
上边的注释翻译为:
__unguarded_linear_insert
翻译为“无防护线性插入”,应该是指直接插入吧。
当__last 的值比前边元素的值小的时候,就一直进行交换,最后把 __last 放到对应的位置。
__unguarded_insertion_sort
就是直接对区间的每个元素进行插入。
总结
到这里,sort 的源代码就剖完了(除了堆的那部分)。
虽然没怎么看懂,但也理解了,sort 的源码是在快排的基础上,通过堆排序和插入排序来维护时间复杂度的稳定,不至于退化为 [公式] 。
鬼知道我写这么多是为了干嘛……
px竞价排序指标源码!最新排序出炉
{ PX排序公式}
连板指标:BARSLASTCOUNT(C>=REF(C,1)*1. AND C=H)
竞价额1:DYNAINFO()/
流通市值:FINANCE()/
竞价手数:DYNAINFO()/DYNAINFO(4)/
万手指标:竞价手数/
竞流比:(竞价手数/FINANCE())
*涨停系数:(FINANCE()/)*O
竞5指标:竞价手数/涨停系数
比值指标:竞价额1/流通市值/#DAY
强度指标:竞5/比值
基本量指标:REF(V,1)#DAY*0./
力度指标:万手/基本量
*时间指标:IF(基本量/万手<=,基本量/万手,0){ 分钟}
高开指标:(O/REF(C,1)-1)*,NODRAW,COLORYELLOW
强度指标:REF(V,1)#DAY/FINANCE()*,COLORYELLOW
{ 取范围}
过滤条件:去低值 AND 去ST AND 去星星 AND 去特殊 AND 去新股 AND 去次新股 AND NOT(REF(ZT,1))
{ 取股票范围}
评分:F1+F2+F3+F4
观察强度:竞价额1/时间,NODRAW
涨幅指标:C/REF(C,1)*-
昨涨幅指标:REF(涨幅,1)
TJ1指标:SQRT(REF(H,1)*REF(L,1))
ZGJ指标:REF(HHV(H,2),1)#DAY
竞价量指标:GPJYVALUE(,1,0)
开盘金额A:竞价量*O/
竞换手指标:开盘金额A/O/FINANCE()
*今竞额指标:IF(CURRBARSCOUNT=1 AND PERIOD=5,DYNAINFO()/,竞金额)COLORGREEN,NODRAW
换手Z指标:今竞额*/O/FINANCE()* COLORGREEN,NODRAW
BL指标:今竞额*/REF(HHV(AMOUNT,5),1)* COLORGREEN,NODRAW
☆爆☆指标:IF(FINANCE(7)*O/< AND REF(ZT,1) AND 观察强度> AND 观察强度<,BL*换手Z*(O-REF(O,1))/REF(O,1)*,0)
桌面软件开发分享Desktop-portable-topological-sorting-application(桌面便携式拓扑排序软件)
这篇博客详细介绍了拓扑排序图绘制工具——TopologicalSort_app的开发与实现,以确保项目的实施和开发合理、可行。项目采用Python语言,结合PySide2、networkx、matplotlib、subprocess等库,实现了一个桌面便携式拓扑排序软件。此软件具备技术可行性和操作可行性,能够高效、准确地绘制拓扑排序图。技术实现方案包括使用PySide2构建图形用户界面,网络x和matplotlib绘制图形,Python的文件处理功能实现文件导入导出,以及使用C++程序进行拓扑排序的计算。开发人员需具备Python编程、图论知识,以及调用C++程序的能力。操作界面设计简单明了,用户容易上手,提供了导入、导出、绘制图像等功能,符合用户使用习惯。C++程序的调用对用户透明,操作界面友好,确保了操作可行性。项目设计包括修订历史记录、软硬件环境、需求分析、详细设计、运行结果截图和测试内容,以及系统特色与可扩展点。系统特色包括图形用户界面、拓扑排序图绘制、文件导入导出、C++程序调用、动态UI加载、用户操作反馈和异常处理。可扩展点包括核心源代码的模块化设计和GitHub仓库地址。用户可以遵循用户使用手册进行安装与操作,完成基本功能如导入文件、生成拓扑排序、导出结果。此软件为桌面便携式,适用于拓扑排序图的绘制与分析。
2024-12-28 23:13
2024-12-28 23:00
2024-12-28 22:25
2024-12-28 22:25
2024-12-28 22:09