【仙迹源码】【外卖源码能用】【matplotlib 源码结构】react源码工具
1.React lazy/Suspense使用及源码解析
2.React设计原理,码工由浅入深解析 react18 源码(一)
3.react源码解析(二)时间管理大师fiber
4.react源码理解-React.Children
5.源码级解析,码工搞懂 React 动态加载(上) —— React Loadable
6.放弃 console.log 吧!码工用 Debugger 你能读懂各种源码
React lazy/Suspense使用及源码解析
在React v.6.0发布后的码工一年,我开始使用新版React进行项目开发,码工虽然没有立即更新,码工仙迹源码但新项目的码工需求促使我关注了代码分割技术,特别是码工lazy和suspense。React官网将其视为code-splitting的码工核心内容,旨在解决大型项目中第三方库导致的码工打包文件过大,加载不必要的码工内容问题。
React.lazy的码工核心是在用户实际需要时才加载相关的模块,这对于基于路由的码工懒加载尤其适用。其使用方式简单,码工只需返回一个Promise包装的码工组件导入函数,并配合Suspense组件提供过渡效果。不过,需要注意的是,React.lazy并不适用于服务器端渲染(SSR)。
在实际项目中,根据组件的复杂性,我们可以灵活决定是否采用懒加载。例如,在App.tsx中定义路由时,针对每个路由地址,我们使用高阶组件封装Suspense。使用lazy后,组件会被按需打包成多个chunk文件。
深入React源码,我们发现LazyComponent的加载在beginWork函数的mountLazyComponent中实现。这个过程包括解析lazy组件类型、确定组件类型(class或function)、设置默认props、以及执行updateClassComponent或updateSuspenseComponent方法进行组件渲染。
总的来说,React.lazy和Suspense提供了有效地管理组件加载和优化用户体验的手段,通过源码分析,我们可以更好地理解其工作原理,并根据项目需求灵活运用。如有任何问题或改进意见,欢迎大家交流讨论。
React设计原理,由浅入深解析 react 源码(一)
React设计原理详解:深入理解React 源码(一)
React的核心工具之一是jsx,它是一种语法扩展,开发者编写的代码会被Babel编译成ReactElement,进一步转化为FiberNode,这是一种虚拟DOM在React中的实现,它能表达组件状态和节点关系,同时具备可扩展性。 FiberNode的工作方式采用深度优先遍历(DFS)策略,递归地处理ReactElement。外卖源码能用在渲染过程中,递归分为beginWork(开始工作)和completeWork(完成工作)两个阶段。在ReactDOM的createRoot和render方法中,scheduleUpdateOnFiber和processUpdateQueue负责更新和创建子fiber节点。 在commit阶段,关键步骤包括执行root上的mutation,以及对Host类型的FiberNode构建离屏DOM树。ChildReconciler的两个关键点是子ReactElement到子fiber的创建方式和flag标识的设置。最后,学习者需要注意的是,通过阅读本文,可以关注以下三点:理解jsx与FiberNode的关系
掌握React的递归渲染过程和commit阶段的子阶段
反思和分享你的学习体验,一起探讨React的深入知识
如果你觉得这篇文章有价值,别忘了在留言区分享你的见解,或者将其推荐给你的朋友。让我们一起深化对React 源码的理解。react源码解析(二)时间管理大师fiber
React的渲染和对比流程在面对大规模节点时,会消耗大量资源,影响用户体验。为了改进这一情况,React引入了Fiber机制,成为时间管理大师,平衡了浏览器任务和用户交互的响应速度。 Fiber的中文翻译为纤程,是一种内部更新机制,支持不同优先级的任务管理,具备中断与恢复功能。每个任务对应于React Element的Fiber节点。Fiber允许在每一帧绘制时间(约.7ms)内,合理分配计算资源,优化性能。 相比于React,React引入了Scheduler调度器。当浏览器空闲时,Scheduler会决定是否执行任务。Fiber数据结构具备时间分片和暂停特性,更新流程从递归转变为可中断的循环,通过shouldYield判断剩余时间,灵活调整更新节奏。 Scheduler的关键实现是requestIdleCallback API,它用于高效地处理碎片化时间,提高用户体验。尽管部分浏览器已支持该API,React仍提供了requestIdleCallback polyfill,以确保跨浏览器兼容性。 在Fiber结构中,每个节点包含返回指针(而非直接的父级指针),这个设计使得子节点完成工作后能返回给父级节点。这种机制促进了任务的高效执行。 Fiber的matplotlib 源码结构遍历遵循深度优先原则,类似王朝继承制度,确保每一帧内合理分配资源。通过实现深度优先遍历算法,可以构建Fiber树结构,用于渲染和更新DOM元素。 为了深入了解Fiber,可以使用本地环境调试源码。通过创建React项目并配置调试环境,可以观察Fiber节点的结构和行为。了解Fiber的遍历流程和结构后,可以继续实现一个简单的Fiber实例,这有助于理解React渲染机制的核心。 Fiber架构是React的核心,通过时间管理机制优化了性能,使React能够在大规模渲染时保持流畅。了解Fiber的交互流程和遍历机制,有助于深入理解React渲染流程。未来,将详细分析优先级机制、断点续传和任务收集等关键功能,揭示React是如何高效地对比和更新DOM树的。 更多深入学习资源和讨论可参考以下链接: 《React技术揭秘》 《完全理解React Fiber》 《浅谈 React Fiber》 《React Fiber 源码解析》 《走进 React Fiber 的世界》react源码理解-React.Children
React.Children API 主要用于操作子组件,通常在组件中处理子组件数组或函数时使用。例如,我们遇到过一个使用 ThemeContext.Consumer 的代码段,其中 props.children 居然为函数类型。而在常规组件编写中,函数作为 children 会导致报错。
深入理解 React.Children,发现它提供了 forEach 和 map 方法。它们的使用区别不大,主要是 map 方法有返回值,而 forEach 方法没有。以 forEachChildren 为例,其源码揭示了这一方法的工作原理。
在处理 children 时,React.Children.map 方法对非函数类型的 child 进行遍历。然而,当 child 是函数类型时,map 方法不会遍历并报错。这就是 ThemeContext.Consumer 代码段中 children 为函数却未报错的原因。
React.Children.map 方法对于 function 类型的 child 处理,直接报错,表明 map 方法仅处理非函数类型 child。而 ThemeContext.Consumer 的实现中,render 方法确保 children 不是函数,否则会抛出错误。
这种处理方式在组件渲染子组件需要传递参数且子组件延迟渲染时非常有用。如在 Angular 表单渲染中,通过 schema JSON 自动生成表单,pycharm 源码 字体此过程到 React 版本迁移时,使用 function 类型作为 children 可以保持代码一致性,降低框架迁移成本。
举例,假设在 React 中,我们使用自定义表单组件渲染时,将函数作为 children 传入,代码如下所示。这种实践有助于简化代码,保持架构一致性,特别是在不同框架之间迁移时,减少重构工作量。
源码级解析,搞懂 React 动态加载(上) —— React Loadable
本系列深入探讨SPA单页应用技术栈,首篇聚焦于React动态加载机制,解析当前流行方案的实现原理。
随着项目复杂度的提升和代码量的激增,如企业微信文档融合项目,代码量翻倍,性能和用户体验面临挑战。SPA的特性使得代码分割成为优化代码体积的关键策略。
code-splitting原理在于将大型bundle拆分为多个,实现按需加载和缓存,显著降低前端应用的加载体积。ES标准的import()函数提供动态加载支持,babel编译后,import将模块内容转换为ESM数据结构,通过promise返回,加载后在then中注册回调。
webpack检测到import()时,自动进行code-splitting,动态import的模块被打包到新bundle中。通过注释可自定义命名,如指定bar为动态加载bundle。
实现简易版动态加载方案,利用code-splitting和import,组件在渲染前加载,渲染完成前展示Loading状态,优化用户体验。然而,复杂场景如加载失败、未完成等需要额外处理。
引入React-loadable,动态加载任意模块的高阶组件,封装动态加载逻辑,支持多资源加载。通过传入参数如模块加载函数、Loading状态组件,统一处理动态加载成功与异常。
通过react-loadable改造组件,私密app源码实现加载前渲染Loading状态,加载完成后更新组件。支持单资源或多资源Map动态加载,兼容多种场景。
Loadable核心是createLoadableComponent函数,采用策略模式,根据不同场景(单资源或多资源Map)加载模块。load方法封装加载状态与结果,loadMap方法加载多个loader,返回对象。
LoadableComponent高阶组件实现逻辑简单,通过注册加载完成与失败的回调,更新组件状态。默认渲染方法为React.createElement(),使用Loadable.Map时需显式传入渲染函数。
在服务端渲染(SSR)场景下,动态加载组件无法准确获取DOM结构,react-loadable提供解决方案,将异步加载转化为同步,支持SSR。
React loadable原始仓库不再维护,局限性体现在适用的webpack与babel版本、兼容性问题以及不支持现代React项目。针对此问题,@react-loadable/revised包提供基于Hooks与ts重构的解决方案。
React-loadable的实现原理与思路较为直观,下文将深入探讨React.lazy + Suspense的原生解决方案,理解Fiber架构中的动态加载,有助于掌握更深层次的知识。
放弃 console.log 吧!用 Debugger 你能读懂各种源码
很多同学不清楚为什么要使用debugger进行调试,难道console.log不行吗?
即使学会了使用debugger,还是有很多代码看不懂,如何调试复杂的源码呢?
这篇文章将为你讲解为什么要使用这些调试工具:console.log vs Debugger。
相信绝大多数同学都会使用console.log进行调试,将想查看的变量值打印在控制台。
这种方法可以满足基本需求,但遇到对象打印时就无法胜任了。
比如,我想查看webpack源码中的compilation对象的值,我尝试打印了一下:
但你会发现,当对象的值也是对象时,它不会展开,而是打印一个[Object] [Array]这样的字符串。
更严重的是,打印的内容过长会超过缓冲区的大小,在terminal中显示不全:
而使用debugger来运行,在这里设置一个断点查看,就没有这些问题了:
有些同学可能会说,那打印一个简单的值时使用console.log还是很方便的。
比如这样:
真的吗?
那还不如使用logpoint:
代码执行到这里就会打印:
而且没有污染代码,使用console.log的话,调试完成后这个console也不得不删除掉。
而logpoint不需要,它就是一个断点的设置,不在代码中。
当然,最重要的是debugger调试可以看到调用栈和作用域!
首先是调用栈,它就是代码的执行路线。
比如这个App的函数组件,你可以看到渲染这个函数组件会经历workLoop、beginWork、renderWithHooks等流程:
你可以点击调用栈的每一帧,查看都执行了什么逻辑,用到了什么数据。比如可以看到这个函数组件的fiber节点:
再就是作用域,点击每一个栈帧就可以看到每个函数的作用域中的变量:
使用debugger可以看到代码的执行路径,每一步的作用域信息。而你使用console.log呢?
只能看到那个变量的值而已。
得到的信息量差距不是一点半点,调试时间长了,别人会对代码的运行流程越来越清晰,而你使用console.log呢?还是老样子,因为你看不到代码执行路径。
所以,不管是调试库的源码还是业务代码,不管是调试Node.js还是网页,都推荐使用debugger打断点,别再用console.log了,即使想打印日志,也可以使用LogPoint。
而且在排查问题的时候,使用debugger的话可以加一个异常断点,代码跑到抛异常的地方就会断住:
可以看到调用栈来理清出错前都走了哪些代码,可以通过作用域来看到每一个变量的值。
有了这些,排查错误就变得轻松多了!
而你使用console.log呢?
什么也没有,只能自己猜。
Performance
前面说debugger调试可以看到一条代码的执行路径,但是代码的执行路径往往比较曲折。
比如那个React会对每个fiber节点做处理,每个节点都会调用beginWork。处理完之后又会处理下一个节点,再次调用beginWork:
就像你走了一条小路,然后回到大路之后又走了另一条小路,使用debugger只能看到当前这条小路的执行路径,看不到其他小路的路径:
这时候就可以结合Performance工具了,使用Performance工具看到代码执行的全貌,然后用debugger来深入每一条代码执行路径的细节。
SourceMap
sourcemap非常重要,因为我们执行的都是编译打包后的代码,基本是不可读的,调试这种代码也没有什么意义,而sourcemap就可以让我们直接调试最初的源码。
比如vue,关联了sourcemap之后,我们能直接调试ts源码:
nest.js也是:
不使用sourcemap的话,想搞懂源码,但你调试的是编译后的代码,怎么读懂呢?
读懂一行
前面说的debugger、Performance、SourceMap只是调试代码的工具,那会了调试工具,依然读不懂代码怎么办呢?
我觉得这是不可能的。
为什么这么说呢?
就拿react源码来说:
switch case能读懂吧。三目运算符能读懂吧。函数调用能读懂吧。
每一行代码都能读懂,而全部的代码不就是由这一行行代码组成的么?
加上我们可以单步执行来知道代码执行路径。
为啥每行代码都能读懂,连起来就读不懂了呢?
那应该是代码太多了,而你花的时间不够而已。
先要读懂一行,一个函数,读懂一个小功能的实现流程,慢慢积累,之后了解的越来越多之后,你能读懂的代码就会越多。
总结
这篇文章讲了为什么要使用调试工具,如何读懂复杂代码。
console.log的弊端太多了,大对象打印不全,会超过terminal缓冲区,对象属性不能展开等等,不建议大家使用。即使要打印也可以使用LogPoint。
使用debugger可以看到调用栈,也就是代码的执行路径,每个栈帧的作用域,可以知道代码从开始运行到现在都经历了什么,而console.log只能知道某个变量的值。
此外,报错的时候也可以通过异常断点来梳理代码执行路径来排查报错原因。
但debugger只能看到一条执行路径,可以使用Performance录制代码执行的全流程,然后再结合debugger来深入其中一条路径的执行细节。
此外,只有调试最初的源码才有意义,不然调试编译后的代码会少很多信息。可以通过SourceMap来关联到源码,不管是Vue、React的源码还是Nest.js、Babel等的源码。
会了调试之后,就能调试各种代码了,不存在看不懂的源码,因为每一行代码都是基础的语法,都是能看懂的,如果看不懂,只可能是代码太多了,你需要更多的耐心去读一行行代码、一个个函数、理清一个个功能的实现,慢慢积累就好了。
掌握基于debugger、Performance、SourceMap等调试代码之后,各种网页和Node.js代码都能调试,各种源码都能读懂!
Expo 搭建 React-native 项目代码目录分析
创建一个React-native项目涉及多个步骤,其中Expo提供四种工具以简化开发过程。选择初始化模板时,可根据实际需求,如项目演示、组件预览或个人项目等,对应选择不同的模板。例如,选择"blank"模板适用于项目演示和组件预览,"tabs"模板则适用于需要底部tab菜单的项目,"minimal"模板适合需要控制原生代码的项目。
React Native目录结构提供了组件开发的示例目录和相关配置指南。目录结构主要包括src、test和demo三个主要部分,以及根目录下的配置文件。src目录存放React Native组件的源码,test目录包含测试相关代码,而demo目录中包含独立的Expo项目,其中的App.js文件是开发示例的核心,展示src目录中提供的组件。
引入Expo时,由于默认目录结构与metro打包工具的期望不符,需手动调整metro配置文件。首先安装Expo CLI工具,然后选择创建项目,使用命令预览生成的Expo项目。配置metro时,需调整providesModule路径解析名,注入引用的库,如react-native、react和prop-types,确保src目录中的引用能正确解析。配置完成,即可在App.js中引入src中的组件,运行yarn start以在Expo中展示组件。
React Native组件目录结构的灵活性提供多种可能性,本文提供的是一种实用思路。在实际开发中,根据项目需求调整目录结构和配置,以实现高效和可维护的开发流程。
React源码 | 1. 基础:ReactElement
本文将深入探讨ReactElement的基础,重点关注JSX作为React的官方语法,以及其如何通过Babel转换为JavaScript。
JSX,全称为JavaScript XML,允许开发者在JavaScript中嵌入HTML代码,简化组件的创建与渲染。然而,浏览器无法直接解析JSX,因此需要一个转换器,Babel扮演这一角色,它将JSX代码编译成JavaScript文件,让浏览器能够解析。
Babel的转换规则相对简单。对于直接的JavaScript写法,无需转换,但为了兼容性,可能会将某些高版本的语法翻译成低版本。关注的重点在于HTML的处理方式。以这行代码为例:
通过Babel转换后,HTML语法转变成JavaScript语法,即最终将JSX转换为JavaScript。
接着,我们用复杂一点的例子来演示转换规则。React.createElement函数的使用表明,第一个参数表示节点类型,第二个参数是一个对象,包含属性如key:value,后面则是子节点。通过这个规则,我们了解到JSX语法不仅支持原生HTML节点,还包含大量自定义组件。
比如,自定义组件定义如下:
在此,React.createElement的第一个参数转变为变量形式,而非字符串。尝试将函数Comp首字母小写:
然而,React.createElement的第一个参数又变回字符串。这就解释了在React中自定义组件的首字母应大写的原因:Babel编译时将首字母小写的组件视作原生HTML节点,若将自定义组件首字母小写,后续程序将无法识别,最终报错。
Babel编译后的JavaScript代码中,React.createElement函数的调用频繁出现,其返回值为ReactElement。通过示例,我们可以看到ReactElement的结构,即一个简单的对象,包含三个或三类参数。编译后,JSX中的HTML节点转换为嵌套的ReactElement对象,这些对象对构建应用的树结构至关重要,且帮助React实现平台无关性。
React源码学习入门(二)React的render究竟返回的是什么?
深入解析React源码,首先关注核心问题:React的render究竟返回的是什么?理解这一问题,是进一步探索React源码的关键。
React的render函数返回类型被定义为ReactNode。ReactNode可以是多种类型,其中最重要且常见的类型是ReactElement。JSX扩展语法,是React团队早期引入的一种JavaScript语法,允许开发者以类似HTML标签的方式编写代码。
通过Babel编译器,JSX语法转化为React.createElement的调用,这是render函数实际返回的值。ReactElement是一个普通对象,包含type、props等关键属性,是React内部渲染返回的实际底层表示。
ReactElement封装了所有需要的信息,形式简单却极其重要,它相当于一个标记(token),是一种DSL(Domain Specific Language)。通过这一抽象表示,React构建了组件的嵌套树,即Virtual DOM。Virtual DOM允许React实现跨端跨平台的通用处理,且得益于高效的Diff算法,显著提升了整体更新性能,为SSR(Server-Side Rendering)开辟了可能。
React团队在年提出这一理念并实现,展现出前瞻性和创新性,引领了前端技术的新纪元。综上,React的render函数实质返回的是一种简单对象——ReactElement,这一对象通过构建Virtual DOM,实现了前端技术的革新。