1.OBS插件--NDI输入与输出
2.NDI协议实现讲解
3.NDI网络设备接口技术简介
4.ndiä¸jpegsx åºå«
5.NDI 传输协议技术的议源原理是什么?
6.NDI网络设备接口技术简介(2021更新)
OBS插件--NDI输入与输出
OBS插件中的NDI输入与输出详解
NDI,即Network Device Interface,议源是议源一种基于IP网络的设备接口协议,它通过高清以太网技术,议源实现视频设备间的议源点对点连接,为视频共享和实时传输提供了高效稳定的议源直播答题系统源码解决方案。相较于传统的议源电缆,NDI具有成本优势、议源更强抗干扰性和实时双向通信能力,议源同时支持以太网供电,议源简化了布线和降低了总体成本。议源 OBS插件中,议源NDI功能主要包括安装NDI运行环境、议源设置和使用NDI源,议源以及接收NDI数据。议源首先,需安装NDIRuntime,系统会在安装过程中自动配置环境。然后,通过VLC模拟NDI发送,安装NDITools并配置相关参数,包括音频和视频设置。在OBS中,可以将主输出或预览输出设置为NDI源,也可为特定输出应用专用NDI滤镜。接收NDI源时,需要在OBS中选择VLC作为输入源,设置完成后,Studio Monitor工具可实时显示接收到的NDI视频流。 通过这些步骤,OBS用户可以轻松集成NDI技术,实现低延迟、无损传输和双向控制,为直播、安卓加固源码录制等场景提供了强大的灵活性和兼容性。进一步了解OBS插件的其他功能,可以访问相关资源。NDI协议实现讲解
NDI协议,由NewTek公司提出,旨在通过网络提供高质量视频传输。其HX系列,采用高效低带宽技术,能在受限网络环境下,实现全分辨率、全帧速率视频传输。此技术广泛应用于视听、广播、企业、游戏等行业,提供灵活且高效的视频解决方案。
NDI编码基于JPEG压缩原理,其核心为DCT变换,将图像分量分为高频和低频,通过量化和熵编码实现有损压缩。每8*8像素块,首先进行DCT变换,接着量化,再以Z字型排列进行编码,最后通过熵编码进一步压缩,形成编码比特流。
在FPGA设计中,DCT变换需通过两次1维运算完成,涉及乘法和加法。为保证实时性,设计使用两个8*8寄存器组进行数据交换。DCT结果经转置后,再进行第二次DCT,战神ol游戏源码生成最终DCT结果。通过对比C语言与FPGA实现,FPGA在资源利用和性能上展现出优势。
Zigzag编码调整顺序,以优化资源利用。数据存储在8*8寄存器组中,计数器控制读取顺序,实现Z字型输出。量化表配置于FPGA,采用乘法和位移操作代替除法,实现量化处理。
NDI编码中,亮度和色度分量采用不同量化表。C语言与FPGA结果对比,展示了不同实现方式的性能和效率差异。量化过程涉及查找表,通过位操作实现更高效的编码。
熵编码通过查询直流和交流量化表,结合长度和位宽信息,生成编码流。直流分量采用case语句映射,交流分量通过判断条件索引查找表,实现高效编码。结束码通过特定方式写入,确保编码完整性和正确性。
编码流的生成利用位操作,将数据流串接并以字节为单位分割。移位寄存器根据输入长度移位,当达到8位时输出一个字节,实现数据对齐。C语言与FPGA结果一致,验证了设计的有效性和正确性。
NDI网络设备接口技术简介
NDI技术是响应式公司源码由美国NewTek公司开发的免费版权标准,旨在让兼容的视频产品以高质量、低延迟、精确到帧的方式进行通讯、传输和接收广播级质量的视频,非常适合现场直播制作环境中的切换操作。NDI技术在开发时就被设计为一个免费、可广泛使用的平台,受到广播电视设备供应商的广泛采用,包括可能被视为NewTek竞争对手的厂商。NewTek提供了面向Windows、Linux和MacOS平台的NDI代码库和示例,支持包括iOS、Android、Raspberry Pi和FPGA在内的多种开发应用。
与专业IP视频协议如SMPTE、SMPTE-6和ASPEN相比,NDI设计为在千兆网络上运行,无需万兆网络环境,通过使用NDI编解码器进行视频数据压缩实现这一目标。NDI使用mDNS(Bonjour/零配置网络)发现机制在局域网上登记源信息,NDI接收设备可以自动发现并提供其自身信息反馈给这些源。在创建NDI源时,会在NDI发送主机上的一系列端口中选择任意一个TCP端口进行创建。当源被请求时,会在一个适当的端口上建立一个NDI接收器到NDI发送器的TCP连接。NDI 3.x版本采用带有FEC(前向纠错)功能的UDP组播或单播代替TCP,并且可以跨多个千兆网卡传输负载均衡组播流,无需链路聚合。
NDI携带视频、多通道无压缩音频和元数据。元数据信息可以在两个方向上发送,允许发送者和接收者通过NDI连接以XML形式的任意元数据相互发送消息。该方向性的centos源码安装dhcp元数据系统提供了如返送给NDI源TALLY信息等功能,使NDI源了解到它在直播中是否处于PGM(节目播出)或PVW(预览)状态。NDI还允许发送者确定其连接的接收器的数量,因此当没有NDI接收器客户端连接时,它们可以略过不必要的处理和网络带宽利用。
与其他专业IP视频协议比较,NDI技术在使用场景和网络适应性方面表现出色,支持广泛的平台和应用,且无需高端网络基础设施,使得现场直播和多设备视频制作更加灵活和高效。
ndiä¸jpegsx åºå«
NDIåè®®ï¼æ¯åºäºRTSPæ¯å±åç½å®æ¶æµä¼ è¾åè®®å级çï¼NDIå议使è§é¢å ¼å®¹äº§åéè¿å±åç½è¿è¡è§é¢å ±äº«çå¼æ¾å¼åè®®ï¼ç´æ¥éè¿IPç½ç»è¿è¡è¶ ä½å»¶æ¶ãæ æä¼ è¾ã交äºæ§å¶çæ åæå¡ï¼NDIæ¯æä¸ç§è®¿é®æºå¶ï¼è¿ç§æºå¶å 许æå¨è¾å ¥æ£å¨è¿è¡NDIæºçå ¶ä»åç½ä¸ç计ç®æºçIPå°åã
jpegsx类似äºjpgï¼è¯¥ç±»æ件çä¼ç¹æ¯ä½ç§¯å°å·§ï¼å¹¶ä¸å ¼å®¹æ§å¥½ï¼å 为大é¨åçç¨åºé½è½è¯»åè¿ç§æ件ï¼è¿æ¯å 为JPGæ ¼å¼ä¸ä» æ¯ä¸ä¸ªå·¥ä¸æ åæ ¼å¼ï¼èä¸æ´æ¯webçæ åæä»¶æ ¼å¼ãJPGæ件å¦æ¤æ¥æå¦æ¤ä¾¿å©çæ¡ä»¶ï¼é¾æªå¾å°äºä¸ä½ç©å®¶çæ¨å´ãä¸è¿å¦ä¸æ¹é¢ï¼JPGä¹æ以å¾å°çåå æ¯ï¼å½æ件å¨å建çæ¶åä¼æä¸äºæ°æ®è¢«é失ï¼å³éè¿âææâçå缩æ¹å¼æ¥å»ºç«æ件ï¼è¿å°±æ¯å ¶æ件å°çåå æå¨äºã
å¦ææ°ç ç¸æºéç¨äºJPGä½ä¸ºç §çåå¨çæ ¼å¼è½ç¶å¯ä»¥èçå®è´µç©ºé´ï¼ä½ä¸å©çä¸é¢ä¹å¿ é¡»çæ¸ ï¼å¡æ¯å¯ä»¥å¨ç¸æºä¸è°æ´ç诸å¦è²æ¸©ãè²å½©å¹³è¡¡ãå¾åé度çç»è¿ç¸æºçå¤çåé½è®°å½å¨æ件å ï¼åæè°æ´åªè½éè¿photoshopå¤çæ¥è¿è¡ï¼ä½æ¯ç»è¿è°æ´çå¾åè´¨éå°ä¼æææ失ã
NDI 传输协议技术的原理是什么?
在音视频IP技术的演进历程中,NDI 5凭借其独特的RUDP传输机制以及对Apple系统的全面支持,崭露头角。相较于SRT,NDI 5的优势不仅在于其优化的实时性和稳定性,更在于其全平台的统一性以及对互联网和远程制作环境的专为设计。RUDP的运用显著提升了传输效率,使得NDI 5的应用范围得以拓宽。
在技术细节上,NDI 5在音频处理、安全性及编码效率上有了显著提升。NewTek推出的NDI|HX3更是点睛之笔,它在保证画面质量的同时,通过H./H.编码推荐使用短关键帧间隔,以应对网络波动带来的挑战。这预示着NDI 5正朝着兼容更广泛的互联网设备和应用环境迈进,同时强化了安全性和性能优化。
特别值得一提的是,NDI|HX3与NDI High-bandwidth在编码效率上的对比,H./H.凭借其更高的压缩率和更低的码率,提供了卓越的帧内编码效率。H./H.的去块效应滤波技术尤其在处理高分辨率如4K画面时,有效解决了马赛克问题。然而,NDI 5面临的挑战也不容忽视,如4K画面质量的提升、安全性的加强(需要鉴权机制)以及在ARM处理器上的软件编码性能提升。
在实际应用中,SRT和NDI 5各有侧重。SRT以其低延迟、安全性和灵活性为特点,而选择哪一方,则取决于具体的工作模式、生态系统和厂商支持。NDI|HX3在画面质量与带宽之间取得了平衡,但压缩质量受分辨率、画面复杂度、运动等因素的影响,需要根据具体情况进行权衡。
总结来说,虽然H./H.在编码效率上领先于NDI High-bandwidth,NDI 5仍需应对生态系统的考量和具体需求。未来,NDI 5的发展趋势包括:积极应对互联网和远程制作的挑战,解决连接和安全问题;NDI|HX在压缩效率和网络带宽优化上扮演关键角色;开放性增强,拓展至更多行业,如数字标牌和医疗领域;同时,NDI有望在云端视频业务的I/O标准领域崭露头角,千视Kiloview已在此方面展现出先行者的姿态。
尽管NDI视频质量通常表现良好,但在复杂场景中可能面临挑战,低延迟模式下的延迟约为ms,受帧率影响。但用户在追求低延迟时,也需要对厂商宣称的数据保持审慎。NDI 5的进步与变革,将引领音视频技术的新篇章。
NDI网络设备接口技术简介(更新)
NDI,全称Network Device Interface,由NewTek公司开发的免费标准,旨在实现高清视频在高质量、低延迟、精确到帧的条件下,以IP协议进行通讯、传输和接收,特别适用于现场直播制作环境中的视频切换。
NDI设计原理基于千兆以太网运行,通常以约Mbit/s的可变比特率传输i格式高清视频。默认使用mDNS(Bonjour/Zeroconf)在局域网内发现源信息,NDI接收设备可自动发现源并反馈信息。其他发现模式包括NDI访问和NDI发现服务器,允许跨子网操作。NDI在创建源时选择TCP端口,源请求时建立TCP连接。NDI 3.x版本采用带FEC功能的UDP组播或单播替代TCP,并可在不使用链路聚合的情况下实现多网络接口负载均衡。NDI 4.0引入了multi-TCP连接。
NDI携带视频、多通道未压缩音频和元数据。元数据双向传输,使发送方和接收方通过任意XML格式的消息相互发送信息,包括如TALLY信息等,以了解直播状态。NDI允许发送方确定连接的接收方数量,减少不必要的处理和带宽使用。接收器可选择连接不同流组合,支持纯音频或纯元数据连接。
NDI SDK支持Windows、Linux、MacOS等平台,可移植至iOS、TVOS、Android、Raspberry PI和FPGA。标准NDI SDK免费,高级SDK需商业许可。
与其他协议比较,NDI与其他专业视频制作IP视频协议(如SMPTE 、SMPTE、ASPEN等)存在差异,主要在于传输技术、发现机制和功能支持。
NDI于年由NewTek首次发布,前身AirSend技术已被CG设备制造商采用。NDI 2.0版本于年发布,增加了跨子网发现服务等新功能。NDI 3.0于年发布,引入组播、NDI/HX高压缩编码等新功能。NDI 4.0于年发布,增加了多TCP模式,利用硬件加速降低处理器负载。NDI 5于年发布,增加了可靠UDP传输、冗余发现服务器支持等功能。
NDI在无线WiFi和广域网应用中使用TCP技术,支持跨子网工作和长距离传输。NDI可用于基于云的制作系统,压缩视频和单播传输适用于AWS和Azure等云服务。NDI支持x和ARM架构,从年开始的AMD CPU和所有英特尔CPU设计均支持SSSE3指令集,支持AVX和AVX2指令集以提高性能。NDI HX设备基于H.编码器芯片,提供编码和解码支持,NDI流接收端形成,向应用软件提供未压缩数据。NDI规范支持任意元数据,分为内部、公共和第三方模式,用于连接、协议和自定义信息。
三分钟快速了解NDI|HX 3
NewTek最近推出了PTZ3 UHD 4K超高清遥控云台摄像机,这款产品与年初推出的PTZ3高清摄像机一样,采用了NDI®| HX3技术,实现了画质提升和延迟降低。
那么,什么是NDI|HX3呢?它其实是NDI协议的最新版本,未来将成为现场活动、视频制作、专业视音频、会议制作、远程制作和流媒体应用中用户的首选格式。
NDI®是一种基于IP的视频协议,允许视频流通过网络共享、可见和可访问。它以双向音视频传输和IP制作能力著称。NDI主要有两种格式——NDI|HX和全码NDI。NDI|HX采用H.或HEVC编码/解码,降低码率,是网络带宽有限时的理想选择。NDI|HX3在保证视频质量的同时,实现了极低的延迟,所需带宽仅为全码NDI的一小部分。
NDI|HX3与HX2、全码NDI有何区别?NDI|HX使用高效编码算法提供高质量视频,全码NDI则使用更高带宽生成高清和超高清视频流。NDI|HX3以极低的延迟生成视觉无损视频,在图像质量和延迟方面与全码NDI基本无差别。
GOP是什么?HX3采用GOP技术实现视频质量提升。GOP是压缩视频流中的一系列连续组,包含关键帧和中间帧,关键帧描述了帧的所有细节,中间帧仅描述中已更改的部分。更多的I帧意味着更高的图像质量和更低的延迟。
NDI|HX3的优势在于其带宽和质量的完美平衡。虽然全码NDI的视频质量令人满意,但许多网络无法承受其高数据速率。而NDI|HX和NDI|HX2虽然带宽理想,但在图像质量上有所牺牲。NDI|HX3适用于大多数现代IP网络,以最小延迟提供卓越视频质量。
NDI|HX3不需要FPGA,这非常重要。FPGA是一种可编程硬件设备或芯片,虽然灵活,但功耗高、成本昂贵。NDI|HX3支持基于ARM的设备,成本较低,使在大多数硬件设备上运行成为可能。
NDI 5是否支持NDI|HX3?好消息是NDI 5工具包原生支持NDI|HX3解码,包括NDI Bridge远程传输应用。当前版本的NDI SDK和高级版SDK同样都支持NDI|HX3。
2024-12-29 05:32
2024-12-29 05:31
2024-12-29 05:09
2024-12-29 05:03
2024-12-29 04:56
2024-12-29 04:40
2024-12-29 04:08
2024-12-29 03:10