皮皮网

【wpf源码查看】【汽车销售php源码】【si服脱机源码】拆标源码_拆标什么意思

时间:2024-12-28 19:52:45 分类:综合 来源:接龙扫雷牛牛源码

1.���Դ��
2.源码级解析,拆标拆标搞懂 React 动态加载(上) —— React Loadable
3.如何评价芋道源码?源码
4.代码拆分-使用SplitChunks
5.区块链源代码如何查询,币开源代码哪里查
6.slate.js源码分析(四)- 历史记录机制

拆标源码_拆标什么意思

���Դ��

       大纲

       概述

       chan 是 golang 的核心结构,是什意思与其他高级语言区别的显著特色之一,也是拆标拆标 goroutine 通信的关键要素。尽管广泛使用,源码但对其深入理解的什意思wpf源码查看人却不多。本文将从源码编译器的拆标拆标视角,全面剖析 channel 的源码用法。

       channel 的什意思本质

       从实现角度来看,golang 的拆标拆标 channel 实质上是环形队列(ringbuffer)的实现。我们将 chan 称为管理结构,源码channel 中可以放置任何类型的什意思对象,称为元素。拆标拆标

       channel 的源码使用方法

       我们从 channel 的使用方式入手,详细介绍 channel 的什意思使用方法。

       channel 的创建

       创建 channel 时,用户通常有两种选择:创建带有缓冲区和不带缓冲区的 channel。这对应于 runtime/chan.go 文件中的 makechan 函数。

       channel 入队

       用户使用姿势:对应函数实现为 chansend,位于 runtime/chan.go 文件。

       channel 出队

       用户使用姿势:对应函数分别是 chanrecv1 和 chanrecv2,位于 runtime/chan.go 文件。

       结合 select 语句

       用户使用姿势:对应函数实现为 selectnbsend,位于 runtime/chan.go 文件中。

       结合 for-range 语句

       用户使用姿势:对应使用函数 chanrecv2,位于 runtime/chan.go 文件中。

       源码解析

       以上,我们通过宏观的用户使用姿势,了解了不同使用姿势对应的不同实现函数,接下来将详细分析这些函数的实现。

       makechan 函数

       负责 channel 的创建。在 go 程序中,当我们写类似 v := make(chan int) 的初始化语句时,就会调用不同类型对应的初始化函数,其中 channel 的初始化函数就是 makechen。

       runtime.makechan

       定义原型:

       通过这个,我们可以了解到,声明创建一个 channel 实际上是得到了一个 hchan 的指针,因此 channel 的核心结构就是基于 hchan 实现的。

       其中,t 参数指定元素类型,size 指定 channel 缓冲区槽位数量。如果是带缓冲区的 channel,那么 size 就是槽位数;如果没有指定,那么就是 0。

       makechan 函数执行了以下两件事:

       1. 参数校验:主要是越界或 limit 的校验。

       2. 初始化 hchan:分为三种情况:

       所以,我们看到除了 hchan 结构体本身的内存分配,该结构体初始化的关键在于四个字段:

       hchan 结构

       makechan 函数负责创建了 chan 的核心结构-hchan,接下来我们将详细分析 hchan 结构体本身。

       在 makechan 中,初始化时实际上只初始化了四个核心字段:

       我们使用 channel 时知道,channel 常常会因为两种情况而阻塞:1)投递时没有空间;2)取出时还没有元素。

       从以上描述来看,就涉及到 goroutine 阻塞和 goroutine 唤醒,这个功能与 recvq,sendq 这两个字段有关。

       waitq 类型实际上是一个双向列表的实现,与 linux 中的 LIST 实现非常相似。

       chansend 函数

       chansend 函数是在编译器解析到 c <- x 这样的代码时插入的,本质上就是把一个用户元素投递到 hchan 的 ringbuffer 中。chansend 调用时,一般用户会遇到两种情况:

       接下来,我们看看 chansend 究竟做了什么。

       当我们在 golang 中执行 c <- x 这样的代码,意图将一个元素投递到 channel 时,实际上调用的是 chansend 函数。这个函数分几个场景来处理,总结来说:

       关于返回值:chansend 返回值标明元素是否成功入队,成功则返回 true,否则 false。

       select 的提前揭秘:

       golang 源代码经过编译会变成类似如下:

       而 selectnbasend 只是一个代理:

       小结:没错,chansend 功能就是这么简单,本质上就是一句话:将元素投递到 channel 中。

       chanrecv 函数

       对应的 golang 语句是 <- c。该函数实现了 channel 的元素出队功能。举个例子,编译对应一般如下:

       golang 语句:

       对应:

       golang 语句(这次的区别在于是否有返回值):

       对应:

       编译器在遇到 <- c 和 v, ok := <- c 的语句时,会换成对应的 chanrecv1,chanrecv2 函数,这两个函数本质上都是一个简单的封装,元素出队的实现函数是 chanrecv,我们详细分析这个函数。

       chanrecv 函数的返回值有两个值,selected,received,其中 selected 一般作为 select 结合的函数返回值,指明是否要进入 select-case 的代码分支,received 表明是否从队列中成功获取到元素,有几种情况:

       selectnbsend 函数

       该函数是汽车销售php源码 c <- v 结合到 select 时的函数,我们使用 select 的 case 里面如果是一个 chan 的表达式,那么编译器会转换成对应的 selectnbsend 函数,如下:

       对应编译函数逻辑如下:

       selectnbsend 本质上也就是个 chansend 的封装:

       chansend 的内部逻辑上面已经详细说明过,唯一不同的就是 block 参数被赋值为 false,也就是说,在 ringbuffer 没有空间的情况下也不会阻塞,直接返回。划重点:chan 在这里不会切走执行权限。

       selectnbrecv 函数

       该函数是 v := <- c 结合到 select 时的函数,我们使用 select 的 case 里面如果是一个 chan 的表达式,那么编译器会转换成对应的 selectnbsrecv 函数,如下:

       对应编译函数逻辑如下:

       selectnbrecv 本质上也就是个 chanrecv 的封装:

       chanrecv 的内部逻辑上面已经详细说明过,在 ringbuffer 没有元素的情况下也不会阻塞,直接返回。这里不会因此而切走调度权限。

       selectnbrecv2 函数

       该函数是 v, ok = <- c 结合到 select 时的函数,我们使用 select 的 case 里面如果是一个 chan 的表达式,那么编译器会转换成对应的 selectnbrecv2 函数,如下:

       对应编译函数逻辑如下:

       selectnbrecv2 本质上是个 chanrecv 的封装,只不过返回值不一样而已:

       chanrecv 的内部逻辑上面已经详细说明过,在 ringbuffer 没有元素的情况下也不会阻塞,直接返回。这里不会因此而切走调度权限。selectnbrecv2 与 selectnbrecv 函数的不同之处在于还有一个 ok 参数指明是否获取到了元素。

       chanrecv2 函数

       chan 可以与 for-range 结合使用,编译器会识别这种语法。如下:

       这个本质上是个 for 循环,我们知道 for 循环关键是拆分成三个部分:初始化、条件判断、条件递进。

       那么在我们 for-range 和 chan 结合起来之后,这三个关键因素又是怎么理解的呢?简述如下:

       init 初始化:无

       condition 条件判断:

       increment 条件递进:无

       当编译器遇到上面 chan 结合 for-range 写法时,会转换成 chanrecv2 的函数调用。目的是从 channel 中出队元素,返回值为 received。首先看下 chanrecv2 的实现:

       chan 结合 for-range 编译之后的伪代码如下:

       划重点:从这个实现中,我们可以获取一个非常重要的信息,for-range 和 chan 的结束条件只有这个 chan 被 close 了,否则一直会处于这个死循环内部。为什么?注意看 chanrecv 接收的参数是 block=true,并且这个 for-range 是一个死循环,除非 chanrecv2 返回值为 false,才有可能跳出循环,而 chanrecv2 在 block=true 场景下返回值为 false 的唯一原因只有:这个 chan 是 close 状态。

       总结

       golang 的 chan 使用非常简单,这些简单的语法糖背后其实都是对应了相应的函数实现,这个翻译由编译器来完成。深入理解这些函数的实现,对于彻底理解 chan 的使用和限制条件是必不可少的。深入理解原理,知其然知其所以然,你才能随心所欲地使用 golang。

源码级解析,搞懂 React 动态加载(上) —— React Loadable

       本系列深入探讨SPA单页应用技术栈,首篇聚焦于React动态加载机制,解析当前流行方案的实现原理。

       随着项目复杂度的提升和代码量的激增,如企业微信文档融合项目,代码量翻倍,性能和用户体验面临挑战。SPA的特性使得代码分割成为优化代码体积的关键策略。

       code-splitting原理在于将大型bundle拆分为多个,实现按需加载和缓存,显著降低前端应用的加载体积。ES标准的import()函数提供动态加载支持,babel编译后,import将模块内容转换为ESM数据结构,通过promise返回,加载后在then中注册回调。

       webpack检测到import()时,自动进行code-splitting,动态import的模块被打包到新bundle中。通过注释可自定义命名,如指定bar为动态加载bundle。

       实现简易版动态加载方案,利用code-splitting和import,组件在渲染前加载,渲染完成前展示Loading状态,优化用户体验。然而,复杂场景如加载失败、未完成等需要额外处理。

       引入React-loadable,动态加载任意模块的高阶组件,封装动态加载逻辑,支持多资源加载。通过传入参数如模块加载函数、Loading状态组件,统一处理动态加载成功与异常。si服脱机源码

       通过react-loadable改造组件,实现加载前渲染Loading状态,加载完成后更新组件。支持单资源或多资源Map动态加载,兼容多种场景。

       Loadable核心是createLoadableComponent函数,采用策略模式,根据不同场景(单资源或多资源Map)加载模块。load方法封装加载状态与结果,loadMap方法加载多个loader,返回对象。

       LoadableComponent高阶组件实现逻辑简单,通过注册加载完成与失败的回调,更新组件状态。默认渲染方法为React.createElement(),使用Loadable.Map时需显式传入渲染函数。

       在服务端渲染(SSR)场景下,动态加载组件无法准确获取DOM结构,react-loadable提供解决方案,将异步加载转化为同步,支持SSR。

       React loadable原始仓库不再维护,局限性体现在适用的webpack与babel版本、兼容性问题以及不支持现代React项目。针对此问题,@react-loadable/revised包提供基于Hooks与ts重构的解决方案。

       React-loadable的实现原理与思路较为直观,下文将深入探讨React.lazy + Suspense的原生解决方案,理解Fiber架构中的动态加载,有助于掌握更深层次的知识。

如何评价芋道源码?

       芋道源码评价:总体评价不高。在使用过程中,会发现以下问题:

       首先,芋道源码基于ruoyi框架进行修改,代码经过了大量改动,并过度封装,导致魔法绑定现象频繁出现,使用起来十分不便。

       其次,查看官方文档需要关注gitee/git账号,并且还要付费加入知识星球。这种中国式开源思维在一定程度上限制了文档的开放性,不如直接在gitee上标明文档链接更为合理。

       第三,芋道源码充斥着广告营销信息,与微信公众号捆绑,扫码后需要关注多个公众号,且需付费才能完成关注过程。这种操作方式显得过于复杂,不符合用户的使用习惯。

       第四,芋道源码添加了大量功能,偏离了开源的基本原则。对于不同的后台业务场景,封装其他功能可以理解,但将商城功能融入其中,则显得不伦不类。开发者是否真正经历过实际企业业务场景的开发,值得质疑。

       最后,修改包后,无法获得最新支持。代码虽然在格式上有所优化,但在过度封装业务的同时,拆分业务代码模块的方式让人难以理解,导致复杂度增高。

       综上所述,芋道源码在使用过程中存在多方面的问题,对于简单的场景,可以直接使用ruoyi框架,而对于复杂场景,建议自研,以避免踩坑。

代码拆分-使用SplitChunks

       前言

       探索代码优化的世界,最近开始接触项目优化工作,其中涉及三方组件的拆分。在未进行拆分前,可能存在两个场景:单一js文件过大,影响缓存效率;无法有效管理第三方库。利用`splitChunks`工具,可以将模块进行分割,并提取重复代码,解决上述问题。

       概念区分 - module、bundle、chunk

       深入理解`splitChunks`之前,先梳理几个概念。module:模块,在webpack中,板块走强的源码任何文件都可视为模块,需要配置loader将其转换为支持打包的文件。chunk:编译完成待输出时,webpack将module按特定规则组合成一个个chunk。bundle:webpack处理完chunk文件后,生成供浏览器运行的代码。

       chunk与bundle的关系

       探析chunk的构成与bundle之间的关联。chunk有两种形式:初始化(initial)chunk,即入口起点的主chunk,包含入口起点及其依赖的所有模块;非初始化(non-initial)chunk,用于延迟加载,可能在使用动态导入或`SplitChunksPlugin`时出现。

       通过入口产生的chunk

       假设目录结构如下:index.js, another-module.js, webpack.config.js, package.json添加script配置,运行webpack并使用ndb追踪代码执行。通过命令启动浏览器,点击播放按钮执行build命令,追踪chunk到bundle的流转。

       chunk处理步骤概览

       从`Compilation`类的`seal`方法出发,首先搜集chunks,然后调用`createChunkAssets`方法生成source,为输出文件做准备;通过`compilation.emitAssets`方法记录资源信息到`compilation.assets`对象;一系列回调最终调用`onCompiled`方法,将assets信息写入输出目录,生成bundle文件。

       Demo2 - 动态导入

       将`index.js`中的lodash通过`import`方式导入,动态导入返回promise,通过`then`获取导入信息。修改`webpack.config.js`入口为单个`index.js`。源码追踪显示,初始化文件新增一个名为`index`的chunk,但在模块分析中识别到`import`方式,为`index.js`模块增加了`AsyncDependenciesBlock`标记,经过处理生成一个名为`null`的chunk。

       总结:`chunk`是源代码中的抽象,封装定义如何将模块组写入文件,而`bundle`则是输出目录的文件。

       解决隐患 - `splitChunks`配置

       在上述示例中,存在三方模块重复引用的问题。通过简单的`optimization.splitChunks`配置,实现了lodash的抽离,降低了单个入口文件的大小。总结使用心得,`splitChunks`主要用于代码优化,针对不同场景配置`chunks`选项,如`all`、`async`、`initial`以及自定义函数,以达到高效拆分效果。

       比较`async`、`initial`、`all`的区别

       在示例中增加`another.js`,静态导入lodash,对比`async`、`all`、`initial`的不同效果。默认情况下,`initial`影响HTML文件中的脚本标签,而`async`仅针对动态导入,`all`则考虑更多场景,适合存在复用模块的情况,但需权衡动态导入及其内部依赖的抽离。

       splitChunks.cacheGroups

       在使用`splitChunks`基础上,通过`cacheGroups`实现更细粒度的代码拆分,进一步优化项目结构。

       总结

       通过`splitChunks`配置,实现三方组件的高效管理与拆分,优化代码结构与加载效率。理解模块、bundle、chunk之间的关系,以及如何利用`splitChunks`与`cacheGroups`进行代码拆分与优化,是提升项目性能的关键步骤。

区块链源代码如何查询,币开源代码哪里查

       如何查看spring源码

       1.准备工作:在官网上下载了Spring源代码之后,导入Eclipse,以方便查询。

       2.打开我们使用Spring的项目工程,找到Web.xml这个网站系统配置文件,在其中找到Spring的初始化信息:

       listener

       listener-classorg.springframework.web.context.ContextLoaderListener/listener-class

       /listener

       由配置信息可知,我们开始的入口就这里ContextLoaderListener这个监听器。

       在源代码中我们找到了这个类,它的定义是:

       publicclassContextLoaderListenerextendsContextLoader

       implementsServletContextListener{

       …

       /

**

       *Initializetherootwebapplicationcontext.

       */

       publicvoidcontextInitialized(ServletContextEventevent){

       this.contextLoader=createContextLoader();

       if(this.contextLoader==null){

       this.contextLoader=this;

       }

       this.contextLoader.initWebApplicationContext(event.getServletContext());

       }

       ...

       }

       该类继续了ContextLoader并实现了监听器,关于Spring的信息载入配置、初始化便是从这里开始了,具体其他阅读另外写文章来深入了解。

       二、关于IOC和AOP

       关于SpringIOC网上很多相关的文章可以阅读,那么我们从中了解到的知识点是什么?

       1)IOC容器和AOP切面依赖注入是Spring是核心。

       IOC容器为开发者管理对象之间的依赖关系提供了便利和基础服务,其中Bean工厂(BeanFactory)和上下文(ApplicationContext)就是IOC的表现形式。BeanFactory是ds源码干嘛的个接口类,只是对容器提供的最基本服务提供了定义,而DefaultListTableBeanFactory、XmlBeanFactory、ApplicationContext等都是具体的实现。

       接口:

       publicinterfaceBeanFactory{

       //这里是对工厂Bean的转义定义,因为如果使用bean的名字检索IOC容器得到的对象是工厂Bean生成的对象,

       //如果需要得到工厂Bean本身,需要使用转义的名字来向IOC容器检索

       StringFACTORY_BEAN_PREFIX="";

       //这里根据bean的名字,在IOC容器中得到bean实例,这个IOC容器就象一个大的抽象工厂,用户可以根据名字得到需要的bean

       //在Spring中,Bean和普通的JAVA对象不同在于:

       //Bean已经包含了我们在Bean定义信息中的依赖关系的处理,同时Bean是已经被放到IOC容器中进行管理了,有它自己的生命周期

       ObjectgetBean(Stringname)throwsBeansException;

       //这里根据bean的名字和Class类型来得到bean实例,和上面的方法不同在于它会抛出异常:如果根名字取得的bean实例的Class类型和需要的不同的话。

       ObjectgetBean(Stringname,ClassrequiredType)throwsBeansException;

       //这里提供对bean的检索,看看是否在IOC容器有这个名字的bean

       booleancontainsBean(Stringname);

       //这里根据bean名字得到bean实例,并同时判断这个bean是不是单件,在配置的时候,默认的Bean被配置成单件形式,如果不需要单件形式,需要用户在Bean定义信息中标注出来,这样IOC容器在每次接受到用户的getBean要求的时候,会生成一个新的Bean返回给客户使用-这就是Prototype形式

       booleanisSingleton(Stringname)throwsNoSuchBeanDefinitionException;

       //这里对得到bean实例的Class类型

       ClassgetType(Stringname)throwsNoSuchBeanDefinitionException;

       //这里得到bean的别名,如果根据别名检索,那么其原名也会被检索出来

       String[]getAliases(Stringname);

       }

       实现:

       XmlBeanFactory的实现是这样的:

       publicclassXmlBeanFactoryextendsDefaultListableBeanFactory{

       //这里为容器定义了一个默认使用的bean定义读取器,在Spring的使用中,Bean定义信息的读取是容器初始化的一部分,但是在实现上是和容器的注册以及依赖的注入是分开的,这样可以使用灵活的bean定义读取机制。

       privatefinalXmlBeanDefinitionReaderreader=newXmlBeanDefinitionReader(this);

       //这里需要一个Resource类型的Bean定义信息,实际上的定位过程是由Resource的构建过程来完成的。

       publicXmlBeanFactory(Resourceresource)throwsBeansException{

       this(resource,null);

       }

       //在初始化函数中使用读取器来对资源进行读取,得到bean定义信息。这里完成整个IOC容器对Bean定义信息的载入和注册过程

       publicXmlBeanFactory(Resourceresource,BeanFactoryparentBeanFactory)throws

       BeansException{

       super(parentBeanFactory);

       this.reader.loadBeanDefinitions(resource);

       }

区块链可以去哪查询

       区块链?你是指区块链技术还是区块链资讯,或者区块链行业相关的事情之类的呢?

       1)如果单是“区块链”,那直接百度就可以搜到“区块链百度百科”有很好的诠释。

       2)如果是“区块链技术”,同样,百度也有很好的诠释,各行各业也在新领域尝试与区块链技术相结合,未来说不定区块链技术会得到正确的使用,而不是被拿来忽悠人用。

       3)若是“区块链资讯”,那就可以去各类区块链媒体或财经媒体,每天几乎都有相关区块链行业资讯及快讯报道。如:巴比特、币优财经、区块网、金色、每日等等。

       4)若是“区块链音频”,那可以去喜马拉雅FM、荔枝微课、千聊等平台去听。像“币优之声”、“俞凌雄”、“王峰”以及其他一些财经类媒体区块链相关的音频也是不错的,各种干货及深度解析。

       所以,你说的区块链去哪查,以上4点都跟区块链相关,看自己的选择了。

       区块链交易id在哪查

       这里我们用以太坊区块链的钱包作为例子,小狐狸是加密钱包,以及进入区块链APP的出入口。进入之后获取钱包地址,再使用以太坊区块链的搜索器进入Etherscan官网首页后,就可以获取到以下区块链交易id信息:

       1.最新产生的区块

       2.最新发生的交易

       区块链的交易过程看似神秘繁琐,其实真正说起来却也不见得有那么难。

       第一步:所有者A利用他的私钥对前一次交易(比特货来源)和下一位所有者B签署一个数字签名,并将这个签名附加在这枚货币的末尾,制作出交易单。此时,B是以公钥作为接收方地址。

       第二步:A将交易单广播至全网,比特币就发送给了B,每个节点都将收到交易信息纳入一个区块中

       此时,对B而言,该枚比特币会即时显示在比特币钱包中,但直到区块确认成功后才可以使用。目前一笔比特币从支付到最终确认成功,得到6个区块确认之后才能真正的确认到账。

       第三步:每个节点通过解一道数学难题,从而去获得创建新区块的权利,并争取得到比特币的奖励(新比特币会在此过程中产生)

       此时节点反复尝试寻找一个数值,使得将该数值、区块链中最后一个区块的Hash值以及交易单三部分送入SHA算法后能计算出散列值X(位)满足一定条件(比如前位均为0),即找到数学难题的解。

       第四步:当一个节点找到解时,它就向全国广播该区块记录的所有盖时间戳交易,并由全网其他节点核对。

       此时时间戳用来证实特定区块必然于某特定时间是的确存在的。比特币网络采用从5个以上节点获取时间,然后取中间值的方式成为时间戳。

       第五步:全网其他节点核对该区块记账的正确性,没有错误后他们将在该合法区块之后竞争下一个区块,这样就形成了一个合法记账区块链。

开源代码是不是去中心化怎么查询

       很高兴为您解答这个问题

       今天给各位分享虚拟货币开源代码查询的知识,其中也会对进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,如果有不同的见解与看法,请积极在评论区留言,现在开始进入正题!

       虚拟货币的开源代码到底怎么查找哪些是开

       查询比特币的源代码。

       网络虚拟货币大致可以分为

       第一类是大家熟悉的游戏币。在单机游戏时代,主角靠打倒敌人、进赌馆赢钱等方式积累货币,用这些购买草药和装备,但只能在自己的游戏机里使用。那时,玩家之间没有“市场”。自从互联网建立起门户和社区、实现游戏联网以来,虚拟货币便有了“金融市场”,玩家之间可以交易游戏币。

       第二类是门户网站或者即时通讯工具服务商发行的专用货币,用于购买本网站内的服务。使用最广泛的当属腾讯公司的Q币,可用来购买会员资格、QQ秀等增值服务。

       现在每一个数字虚拟货币都有开源代码我们怎么分析呢

       五种区分方法:去中心化、恒量“发行”、开源代码、独立的电子钱包以及第三方交易平台。

       一、去中心化

       很多人对去中心化概念比较模糊,也有很多关于币的项目也在打着去中心化的旗号在推动者这个市场。

       1、技术去中心化:比特币,莱特币是整个数字货币的一个币种,区块链技术是2.0。美国5年的一个研究,它研究这一块是失败的,只达到1.0。

       2、不属于任何一个公司国家或者机构。比如人民币,美元等都是法币,是由国家发行和控制,是由中心的;还有腾讯公司的Q币也是有中心的,叫虚拟币,不叫虚拟货币,是腾讯公司发行的。

       二、价格为什么会涨的,恒量“发行”。

       其实真正意义上来说,是不应该用“发行”二字的,比特币万枚,莱特币是万枚,其发起人是把这个数字货币计算机计算好,用一套公式保存起来,用互联网程序规定它全球只能有多少枚,是挖掘出来的。

       听说挖地挖地,挖地的矿机,都是时间和数量限制好的,是任何个人或者机构都是更改不了的,并公开它的源代码,谁都可以挖。物以稀为贵,之所以挖矿,就如地球上的黄金一样越挖越少,所以叫挖矿,价格就会上涨。

       人民币一直在超发,就出现通货膨胀的现象,越来越不值钱。真正的数字货币是全球永不蒸发,恒量“发行”,具有真正的稀缺性的,通货紧缩的特质。

       三、开源代码,这是一个关键核心。

       目前所有的数字货币只有一个监管平台,开源代码成熟,一定要去全球唯一的数字货币监管平台审核,通过后挂在此平台上,公布它的开源代码。

       还有一种方式,就是你看各大交易平台是不是有莱特币和比特币的身影,凡是公开透明的都是自由买卖交易。

       四、独立的电子钱包。

       跨境支付的,是可以给某个区域的转账。

       五、第三方交易平台

       封闭式的交易平台和开放式的交易平台

       1、什么是封闭式交易平台呢?

       举例,比如凭票购物,凭票吃饭那个年代,你是化工厂的,你是粮局的,今天你拿着工厂的饭票去粮局吃饭是不可以的,是属于内部掌控的。

       2、开放式的交易平台,像OKCOIN,火币网,都是开放式的。任何一个平台购买的莱特币都是可以在这个平台上进行买卖交易的,公开,透明。

       总之,是不是真正数字货币,有五大标准:

       1、去中心化;2、开源代码;3、恒量发行;4、第三方交易平台;5、电子钱包。

       虚拟货币基本阶段

       没有把游戏币与股票、衍生金融工具、特别是电子货币加以界定和区分。实际上,有一条内在线索可以把这些形态各异的虚拟货币贯穿起来,这就是个性化价值的表现成熟度。我们从逻辑上概括如下:

       一、银行电子货币

       银行电子货币最初是一种“伪虚拟货币”。它只具有虚拟货币的形式,如数字化、符号化,但不具有虚拟货币的实质,与个性化无关。例如,它只是纸币的对应物;它可能由央行发行;它可能与货币市场处于同一市场等。

       但是银行电子货币有一点突破了货币的外延—那就是它也可以不是由央行发行,而是由信息服务商发行,早期的几种电子货币就是这样。第二点突破就是银行电子货币的流动性,远远超过一般货币。因此就隐含了对货币价格水平定价权的挑战。

       比如,在隔夜拆借之中,如果同一笔货币以电子货币方式被周转若干次,虽然从传统货币观点,一切都没有发生,但如果从虚拟货币流通速度的角度看,实际上已改变了货币价格水平的条件。

       二、信用信息货币

       股票是最典型的信用信息货币,其本质是虚拟的,是一种具有个人化特点的虚拟货币。它是当前虚拟经济最现实的基础。股票市场、衍生金融工具市场,构成了一个规模庞大而且统一的虚拟货币市场,它们不仅有实体业务作为基础,而且有广泛的信托业务、保险业务等信息服务作为支撑。

       所谓统一市场是有所特指的,是指这一市场作为一个整体,可以同货币市场在国民收入的整体水平上进行交换。从历史上看,只有当货币形成统一市场,即国民经济的主体都实现货币化时,货币量和利率对国民经济的调节作用才谈得上。这个道理对虚拟经济也一样。

       这个问题不无争议,如今虚拟经济的规模,虽然已经若干倍于实体经济,但实体经济中毕竟还有很大一部分没有进入这个统一市场。如果把游戏币与股票比较,它在这方面的进展还差得远。只有经过娱乐产业化和产业娱乐化两个阶段,才有可能达到统一市场的水平。

       分析股票市场和衍生金融工具市场,它有一个与一般货币市场最大的不同,就是它的流通速度不能由央行直接决定。例如,股指作为虚拟货币价格水平,不能象利率那样,由央行直接决定,而是由所谓人们的“信心”这种信息直接决定的。

       央行以及实体资本市场的基本面,只能间接决定股市,而不能直接决定。所以我认为股票市场是信息市场而不是货币市场。

       同成熟的虚拟货币市场比较,股市在主要特征上,表现是不完全的。股市把所有参照点上的噪音(即个别得失值),集成为一个统一的参照值,与标准值(基本面上的效用值、一般均衡值)进行合成,形成市场围绕效用价值的不断波动。

       虽然有别于以央行为中心进行有序化向心运动的货币市场,但与货币市场又没有区别。而从真正的虚拟货币市场的观点看,不可通约的个性化定价值,才是这一市场的特性所在。从这个意义上说,集中的股市并没有实现这一功用,股市作为所谓“赌场”的独立作用还没有得到发挥。

       三、个性化信用凭证

       虚拟货币的根本作用,是在个性的“现场”合成价值,而不是跑到一个脱离真实世界的均衡点上孤立地确定一个理性价值。虚拟货币的意义在于以最终消费者为中心建立价值体系。虚拟货币全面实现后,只有一般等价功能的单一货币将趋于后台化。

       游戏币是更高阶段虚拟货币的试验田,还难当大任。理想的虚拟货币是真实世界的价值符号。在一般等价交换中,具体使用价值以及具体使用价值的主体对应物—人的非同质化的需求、个性化需求,被完全过滤掉。

       虚拟货币将改变这一切,通过虚拟方式,将人的非同质化需求、个性化需求以个体参照点向基本面锚定的方式,进行价值合成。因此虚拟货币必须具有两面性,一方面是具有商品交换的功能,一方面是具有物物交换的功能。

       通过前者克服价值的相对性和主观性,通过后者实现个性化的价值确认。为了实现这个目标,虚拟货币肯定要实现一不为人知的巨大转型,这就是向对话体系的转型,成为交互式货币。

       这里的讨价还价是针对货币价格水平的讨价还价。回忆一下,人类在几十年内,早已实现的文本向对话的转型,正是虚拟货币转型的方向所在。游戏币的价值其实是不确定的。人们交换到游戏币,从中最终可能得到的快乐,是在币值以上、还是以下,不到参与游戏之时是不确定的。

       游戏就是一个对话过程。当然,游戏币的各种增值功能,还没有结合个性化信息服务开发出来。如果这种增值业务充分得到开发,游戏币因为提供服务的商家不同而不通用,可能反而成为一种相对于股票的优势。

       完全个性化的虚拟货币,可能是一种附加信息的货币卡,它的价值是待确认的。拥有具体待定功能和余值的虚拟货币,其信息一方面可以具有象文本一样有再阐释的余地,一方面具有卡拉OK式的再开发的潜力。

       它的信息价值是有开放接口的,可以再增值的。如果把它们投入股市一样的二级市场交换,它们可能凭其个性化信息在基本票面价值上下浮动,它本身就会具有更多的象股票那样的吸引力。

       游戏货币,还只具有价值流通功能,而不具有市场平台功能,所以它只是一种不完善的虚拟货币,究其原因,是因为缺乏相应的产业基础。

数字货币的开源代码是什么

       近年来,以比特币为代表的区块链数字资产风靡全球,国内外金融机构、科技公司、投资公司等参与方投入大量的人力、物力、技术等资源,进行区块链数字资产的研究、开发、设计、测试与推广。要实现区块链数字资产“四可三不可”的主要特性,可依托安全技术、交易技术、可信保障技术这三个方面的项技术构建数字资产的核心技术体系。首先,以安全技术保障区块链数字资产的可流通性、可存储性、可控匿名性、不可伪造性、不可重复交易性与不可抵赖性。数字货币安全技术主要包括基础安全技术、数据安全技术、交易安全技术三个层面。基础安全技术包括加解密技术与安全芯片技术。加解密技术主要应用于数字资产的币值生成、保密传输、身份验证等方面,建立完善的加解算法体系是数字资产体系的核心与基础,需要由国家密码管理机构定制与设计。安全芯片技术主要分为终端安全模块技术和智能卡芯片技术,数字资产可基于终端安全模块采用移动终端的形式实现交易,终端安全模块作为安全存储和加解密运算的载体,能够为数字资产提供有效的基础性安全保护。数字资产系统交易平台区块链技术研发数据安全技术包括数据安全传输技术与安全存储技术。数据安全传输技术通过密文+MAC/密文+HASH方式传输数字资产信息,以确保数据信息的保密性、安全性、不可篡改性;数据安全存储技术通过加密存储、访问控制、安全监测等方式储存数字货币信息,确保数据信息的完整性、保密性、可控性。

       交易安全技术包括匿名技术、身份认证技术、防重复交易技术与防伪技术。匿名技术通过盲签名(包括盲参数签名、弱盲签名、强盲签名等)、零知识证明等方式实现数字资产的可控匿名性;身份认证技术通过认证中心对用户身份进行验证,确保数字资产交易者身份的有效性;防重复交易技术通过数字签名、流水号、时间戳等方式确保数字资产不被重复使用;防伪技术通过加解密、数字签名、身份认证等方式确保数字资产真实性与交易真实性。其次,以交易技术实现数字资产的在线交易与离线交易功能。数字资产交易技术主要包括在线交易技术与离线交易技术两个方面。数字资产作为具有法定地位的货币,任何单位或个人不得拒收,要求数字资产在线或离线的情况下均可进行交易。在线交易技术通过在线设备交互技术、在线数据传输技术与在线交易处理等实现数字资产的在线交易业务;离线交易技术通过脱机设备交互技术、脱机数据传输技术与脱机交易处理等实现数字资产的离线交易业务。最后,以可信保障技术为区块链数字资产发行、流通、交易提供安全、可信的应用环境。数字资产可信保障技术主要指可信服务管理技术,基于可信服务管理平台(TSM)保障数字资产安全模块与应用数据的安全可信,为数字资产参与方提供安全芯片(SE)与应用生命周期管理功能。可信服务管理技术能够为数字资产提供应用注册、应用下载、安全认证、鉴别管理、安全评估、可信加载等各项服务,能够有效确保数字资产系统的安全可信。

       什么是区块链?区块链技术,简称BT(Blockchaintechnology),也被称之为分布式账本技术,是一种互联网数据库技术,其特点是去中心化、公开透明,让每个人均可参与数据库记录。区块链技术开发区块链技术开发什么是区块链系统?区块链系统是一个具备完整性的数据库系统,写入系统的数据会自动复制到区块链的节点上面,能实现事务性的数据保存,支持多种行业数据库的管理开发,结合多种需求来制作。.亿美元,涨幅为2.%。本周共有5个新项目进入TOP,分别为分别为FST,ZB,WIX,WAX,MXM。8月日,Bitcoin价格为.美元,较上周上涨3.%,Ethereum价格为.美元,较上周下跌3.%。本周h成交额较上周同期上升2.%;TOP项目中币类项目总市值、平均市值涨幅zui大,全球区块链资产TOP项目分类组成稳定。

slate.js源码分析(四)- 历史记录机制

       应用中常见撤销与重做功能,尤其在编辑器中,其实现看似简单却也非易事。为了更好地理解这一机制,本文将深入探讨 MVC 设计模式,并聚焦于 slate.js 如何巧妙地实现撤销与重做功能。

       MVC 模式是一种经典的软件架构模式,自 年提出以来便广为应用。在 MVC 模式中,模型(Model)负责管理数据,视图(View)展示数据,而控制器(Controller)则负责处理用户输入与模型更新。

       在撤销与重做功能的设计中,通常有两种实现思路。其中一种是通过 Redux 等状态管理库实现,而 slate.js 则采用了一种更为直接的方法。本文将重点介绍 slate.js 的实现策略。

       撤销功能允许用户回溯至之前的页面状态,而重做功能则让用户能够恢复已撤销的操作。在执行操作后,当用户请求撤销时,系统会抛弃当前状态并恢复至前一状态。对于复杂的操作,如表格的复制与粘贴,系统的处理逻辑则更为精细,能够跳过不需要记录在历史记录中的状态,确保撤销操作的精准性。

       slate.js 的状态模型主要基于树状的文档结构,通过三种类型的操作指令来管理文档状态:针对节点的修改、光标位置的调整以及文本内容的变更。对节点与文本的修改,可通过特定指令来实现,而光标操作则通常直接修改数据。借助这九种基本操作,富文本内容的任何变化都能被准确地记录与恢复。

       在实现撤销功能时,关键在于如何根据操作指令中的信息推导出相应的撤销操作。例如,撤销对节点的修改操作,只需对记录的操作进行逆向操作即可。相比之下,重做功能则相对简单,只需在撤销操作时记录下指令,以便在后续操作中恢复。

       操作的记录以数组形式进行,便于后续的撤销与重做操作。通过合理的指令与数据模型设计,复杂的操作最终被拆解为简单且可逆的原子操作,确保了功能的高效与稳定。

       总结而言,通过精心设计的指令与数据模型,撤销与重做功能得以实现,使应用在面对用户操作时能够灵活应对,提供无缝的用户体验。此外,本文还附带了一个招聘信息,百度如流团队正面向北京、上海、深圳等地招聘,欢迎有志之士加入。

       参考资料包括:Web 应用的撤销重做实现、slatejs。

copyright © 2016 powered by 皮皮网   sitemap