1.【Unity源码学习】遮罩:Mask与Mask2D
2.Unity的引引擎源码URP HDRP等SRP管线详解(包含源码分析)
3.unity urp源码学习一(渲染流程)
4.《Unity 3D 内建着色器源码剖析》第七章 Unity3D全局光照和阴影
【Unity源码学习】遮罩:Mask与Mask2D
Unity源码学习遮罩详解:Mask与Mask2D UGUI裁切功能主要有两种方式:Mask和Mask2D。它们各自有独特的擎源原理和适用场景。1. Mask原理与实现
Mask利用IMaskable和IMaterialModifier功能,码阅通过指定一张裁切图,分析如圆形,引引擎源码限定子元素的擎源山东棋牌源码显示区域。GPU通过StencilBuffer(一个用于保存像素标记的码阅缓存)来控制渲染,当子元素像素位于Mask指定区域时,分析才会被渲染。引引擎源码 StencilBuffer像一个画板,擎源每个像素有一个1字节的码阅内存区域,记录是分析否被遮盖。当多个UI元素叠加时,引引擎源码通过stencil buffer传递信息,擎源实现精确裁切。码阅2. Mask2D原理
RectMask2D则基于IClippable接口,ppt砸金蛋源码其裁剪基于RectTransform的大小。在C#层,它找出所有RectMask2D的交集并设置剪裁区域,然后Shader层依据这些区域判断像素是否在内,不满足则透明度设为0。 RectMask2D的性能优化在于无需依赖Image组件,直接使用RectTransform的大小作为裁剪区域。3. 性能区别
Mask需要Image组件,裁剪区域受限于Image,而RectMask2D独立于Image,裁剪灵活。因此,Mask2D在不需要复杂裁剪时更高效。 总结:虽然Mask和Mask2D各有优势,选择哪种遮罩取决于具体需求,手机漫画源码下载合理使用能提高性能和用户体验。Unity的URP HDRP等SRP管线详解(包含源码分析)
SRP为可编程渲染管线,Unity中通过C#能自定义多种渲染管线,包含通用管线(URP)与高清管线(HDRP)。
URP通用管线,综合性能与表现力,适合手游或端游场景;HDRP为高清管线,拥有极致表现力,适用于端游、影视制作。
大体结构包括:RenderPipelineAsset、RenderPipelines、Renderer与RenderPass。RenderFeature为辅助组件,配置特定事件并注入到Renderer中的2019诱导支付源码时机进行执行。
具体分析:在RenderPipelineAsset中,创建多条渲染管线。RenderPipelines则构成具体渲染流程,于每一帧调用Render()处理本帧命令,绘制图像。
Renderer维护ScriptableRenderPass列表,每帧通过SetUp()注入Pass执行渲染过程,最终得到序列化结果(ScriptableRendererData)。
RenderPass实现具体渲染逻辑,其Execute()函数执行于每一帧,实现渲染功能。
RenderFeature主要提供“空壳”结构,通过配置RenderPassEvent并注入实例到Renderer中。
总结:理解URP架构,能掌握渲染管线核心。excel文件导入源码后续将继续分享渲染案例、实用工具等内容。
unity urp源码学习一(渲染流程)
sprt的一些基础:
绘制出物体的关键代码涉及设置shader标签(例如"LightMode" = "CustomLit"),以确保管线能够获取正确的shader并绘制物体。排序设置(sortingSettings)管理渲染顺序,如不透明物体从前至后排序,透明物体从后至前,以减少过绘制。逐物体数据的启用、动态合批和gpuinstance支持,以及主光源索引等配置均在此进行调整。
过滤规则(filteringSettings)允许选择性绘制cullingResults中的几何体,依据RenderQueue和LayerMask等条件进行过滤。
提交渲染命令是关键步骤,无论使用context还是commandbuffer,调用完毕后必须执行提交操作。例如,context.DrawRenderers()用于绘制场景中的网格体,本质上是执行commandbuffer以渲染网格体。
sprt管线的基本流程涉及context的命令贯穿整个渲染流程。例如,首次调用渲染不透明物体,随后可能调用渲染半透明物体、天空盒、特定层渲染等。流程大致如下:
多相机情况也通过单个context实现渲染。
urp渲染流程概览:
渲染流程始于遍历相机,如果是游戏相机,则调用RenderCameraStack函数。此函数区分base相机和Overlay相机:base相机遍历渲染自身及其挂载的Overlay相机,并将Overlay内容覆盖到base相机上;Overlay相机仅返回,不进行渲染操作。
RenderCameraStack函数接受CameraData参数,其中包含各种pass信息。添加pass到m_ActiveRenderPassQueue队列是关键步骤,各种pass类实例由此添加至队列。
以DrawObjectsPass为例,其渲染流程在UniversialRenderer.cs中实现。首先在Setup函数中将pass添加到队列,执行时,执行队列内的pass,并按顺序提交渲染操作。
《Unity 3D 内建着色器源码剖析》第七章 Unity3D全局光照和阴影
在Unity 3D中,全局光照和阴影是实现逼真渲染的重要手段。全局光照分为烘焙式和实时两种方式。静态物体通过烘焙式全局照明(Baked GI)处理,预先计算间接照明并存储,而动态物体则通过光探针获取静态物体的反射光。引擎提供了点光源、聚光灯、有向平行光源和区域面光源等光源类型,其中环境光源与天空盒系统关联,可模拟日出日落效果。
实时光照模式下的光源仅产生直接照明,不涉及间接照明,但在Unity 3D的Lighting设置中,勾选Realtime Global Illumination选项,可实现全局照明,主要适用于主机平台游戏。烘焙式光照贴图通过预先计算并存储直接和间接照明信息,节省运行时计算,但内存占用较大。
混合光照模式允许光源实时调整属性,提供动态照明,包括Baked Indirect(仅预计算间接照明)、Shadowmask(预计算静态阴影)和Subtractive(烘焙光源信息)等。其中,Shadowmask存储静态阴影信息,Subtractive模式下动态阴影实时投射到静止物体。
光探针技术弥补了光照贴图对动态物体的限制,通过预计算并插值光照信息,提供更真实的动态物体照明效果。然而,光探针有其局限性,如不适用于大物体内部和大凹面表面。此外,还有反射用光探针,用于环境映射。
渲染阴影功能通过光源空间和屏幕空间确定阴影区域,使用阴影贴图(如阴影映射)和层叠式阴影贴图技术来减少透视走样的问题,提高渲染效率和精度。通过这些技术,Unity 3D能为游戏场景提供丰富多样的光照效果和阴影细节。
2024-12-28 15:29
2024-12-28 14:44
2024-12-28 14:43
2024-12-28 14:26
2024-12-28 13:35
2024-12-28 13:01