皮皮网
皮皮网
java源码 网络爬虫

【易语言考场编排源码下载】【大唐电玩源码】【nextcloud源码 下载】信号量源码_信号量代码例子

时间:2024-12-29 07:04:24 分类:娱乐 编辑:typeface 源码
1.?信号ź???Դ??
2.深度解析sync WaitGroup源码
3.Java并发系列 | Semaphore源码分析
4.FreeRTOS系列教程(四):如何使用信号量
5.信号量测完整性测试五Display Port信号完整性测试
6.信号量(Semaphore)从入门到源码精通

信号量源码_信号量代码例子

?ź???Դ??

       在深入理解Java并发编程时,必不可少的量源例是对Semaphore源码的剖析。本文将带你探索这一核心组件,码信通过实践和源码解析,号量掌握其限流和共享锁的代码本质。Semaphore,信号易语言考场编排源码下载中文名信号量,量源例就像一个令牌桶,码信任务执行前需要获取令牌,号量处理完毕后归还,代码确保资源访问的信号有序进行。

       首先,量源例Semaphore主要有acquire()和release()两个方法。码信acquire()负责获取许可,号量若许可不足,代码任务会被阻塞,直到有许可可用。release()用于释放并归还许可,确保资源释放后,其他任务可以继续执行。一个典型的例子是,如果一个线程池接受个任务,但Semaphore限制为3,那么任务将按每3个一组执行,确保系统稳定性。

       Semaphore的源码实现巧妙地结合了AQS(AbstractQueuedSynchronizer)框架,通过Sync同步变量管理许可数量,公平锁和非公平锁的实现方式有所不同。公平锁会优先处理队列中的任务,而非公平锁则按照获取许可的顺序进行。

       acquire()方法主要调用AQS中的acquireSharedInterruptibly(),并进一步通过tryReleaseShared()进行许可更新,公平锁与非公平锁的区别在于判断队列中是否有前置节点。release()方法则调用releaseShared(),更新许可数量。

       Semaphore的简洁逻辑在于,AQS框架负责大部分并发控制,子类只需实现tryReleaseShared()和tryAcquireShared(),专注于许可数量的管理。欲了解AQS的详细流程,可参考之前的文章。

       最后,了解了Semaphore后,我们还将继续探索共享锁CyclicBarrier的实现,敬请期待下篇文章。大唐电玩源码

深度解析sync WaitGroup源码

       waitGroup

       waitGroup 是 Go 语言中并发编程中常用的语法之一,主要用于解决并发和等待问题。它是 sync 包下的一个子组件,特别适用于需要协调多个goroutine执行任务的场景。

       waitGroup 主要用于解决goroutine间的等待关系。例如,goroutineA需要在等待goroutineB和goroutineC这两个子goroutine执行完毕后,才能执行后续的业务逻辑。通过使用waitGroup,goroutineA在执行任务时,会在检查点等待其他goroutine完成,确保所有任务执行完毕后,goroutineA才能继续进行。

       在实现上,waitGroup 通过三个方法来操作:Add、Done 和 Wait。Add方法用于增加计数,Done方法用于减少计数,Wait方法则用于在计数为零时阻塞等待。这些方法通过原子操作实现同步安全。

       waitGroup的源码实现相对简洁,主要涉及数据结构设计和原子操作。数据结构包括了一个 noCopy 的辅助字段以及一个复合意义的 state1 字段。state1 字段的组成根据目标平台的不同(位或位)而有所不同。在位环境下,state1的第一个元素是等待线程数,第二个元素是 waitGroup 计数值,第三个元素是信号量。而在位环境下,如果 state1 的地址不是位对齐的,那么 state1 的第一个元素是信号量,后两个元素分别是等待线程数和计数值。

       waitGroup 的核心方法 Add 和 Wait 的实现原理如下:

       Add方法通过原子操作增加计数值。当执行 Add 方法时,首先将 delta 参数左移位,然后通过原子操作将其添加到计数值上。需要注意的是,delta 的值可正可负,用于在调用 Done 方法时减少计数值。

       Done方法通过调用 Add(-1)来减少计数值。

       Wait方法则持续检查 state 值。当计数值为零时,表示所有子goroutine已完成,调用者无需等待。nextcloud源码 下载如果计数值大于零,则调用者会变成等待者,加入等待队列,并阻塞自己,直到所有任务执行完毕。

       通过使用waitGroup,开发者可以轻松地协调和同步并发任务的执行,确保所有任务按预期顺序完成。这在多goroutine协同工作时,尤其重要。掌握waitGroup的使用和源码实现,将有助于提高并发编程的效率和可维护性。

       如果您对并发编程感兴趣,希望持续关注相关技术更新,请通过微信搜索「迈莫coding」,第一时间获取更多深度解析和实战指南。

Java并发系列 | Semaphore源码分析

       在Java并发编程中,Semaphore(信号量)是AQS共享模式的实用工具,它能够控制多个线程对共享资源的并发访问,实现流量控制。Semaphore的核心概念是“许可证”,类似于公共汽车票,只有获取到票的线程才能进行操作。许可证数量有限,当数量耗尽时,后续线程需要等待,直到有线程释放其许可证。Semaphore构造器接受初始许可证数量,可以选择公平或非公平的获取方式。

       Semaphore提供了获取和释放许可证的API,默认每次操作一个许可证。获取许可证有直接和尝试两种方式,直接获取可能阻塞,而尝试不会。acquire方法内部调用的是AQS的acquireSharedInterruptibly,它会尝试公平或非公平地获取,并在获取失败时决定是否阻塞。释放许可证则直接调用AQS的releaseShared方法,通过自旋循环确保同步状态的正确更新。

       Semaphore的应用广泛,本文通过实现一个简单的数据库连接池,展示了Semaphore如何控制连接的并发使用。连接池初始化时创建固定数量的连接,每次线程请求连接时需要获取许可证,收银平台 源码释放连接时则释放许可证。测试结果验证了Semaphore有效管理连接并发并确保了流量控制。

       代码示例与测试结果表明,Semaphore通过控制许可证数量,确保了资源使用的合理调度,当连接池中所有连接被占用,后续请求将被阻塞,直到有连接被释放。这清楚地展示了Semaphore在并发控制中的作用。

FreeRTOS系列教程(四):如何使用信号量

       大家好,我是旭辉君,一个智能硬件领域深度探索的技术博主。

       在上篇文章中,我们理解了在FreeRTOS中如何使用消息队列进行任务间的数据传递,链接如下:

       本文我们就一起来探索信号量的使用。所谓信号量,可以简单的理解为就是一个状态标志,我们可以用这个状态标志来进行任务间的同步,有序访问,或者互斥访问。从这些对于信号量不同的应用,常用的信号量可以分为:

       本文我们将重点讲述二值信号量与计数信号量的使用。互斥信号量放在下一篇文章讲解。通过本文,我们将会知道:

       接下来让我们一起,进入信号量的探索之旅!

       如前文所述,信号量可以提供任务间数据的同步机制。我们假设有两个任务TaskA和TaskB,其中TaskB等待TaskA产生的数据并进行处理,按照之前我们在裸机编程时候的思路,一般都是设置一个全局变量,然后在while1中轮流执行这两个任务,若TaskA产生的数据让这个全局变量发生改变,TaskB在轮询到之后就能处理这些数据,但是,如果TaskA里面的数据久久不发生改变,那么一直轮询TaskB就是无效的,CPU做了许多的无用功。

       所以应该怎么优化呢?

       假若在TaskA数据发生不改变的时候,TaskB进入阻塞态不执行,当TaskA数据发生改变的时候才去执行TaskB,这样就不会浪费CPU的资源。为此,zend 源码对齐FreeRTOS引入了信号量(Semaphore)概念,通过信号量的同步机制可以使任务在数据还没到达的时候进入阻塞状态,在数据到达之后才得以执行,提高系统资源利用率。

       二进制信号量只有两个状态,只能用于两个任务间的同步;计数信号量中信号量的数目可以自定义设定为多个,可用于多个任务间的同步。

       创建信号量时, 系统会为创建的信号量对象分配内存, 二值信号量的最大可用信号量个数为 1。创建成功后,任何任务都可以从创建的二值信号量资源中获取这个二值信号量,获取成功则任务继续运行, 否则任务会根据用户指定的阻塞超时时间来等待其它任务或者中断释放信号量。在等待这段时间,系统将任务变成阻塞态, 任务将被挂到该信号量的阻塞等待列表中。下图为任务获取信号量时的示意图:获取信号量无效时任务进入阻塞,其他任务释放信号量后,信号量有效,该任务恢复为就绪态。

       相比于二值信号量,计数信号量允许多个任务获取同一个信号量,这多个任务的数目可以由我们设定。比如我们设定,某个资源只能有 3 个任务访问,那么第 4 个任务访问的时候,会因为获取不到信号量而进入阻塞,等到有任务(比如任务 1)释放掉该资源的时候,第 4 个任务才能获取到信号量从而进行资源的访问,其运作的机制具体见下图:

       观察信号量控制块结构体以及信号量创建函数的源码,我们就会惊奇的发现:FreeRTOS 的信号量控制块结构体与消息队列结构体是一模一样的!信 号 量 的 创 造 实 际 调 用 的 函 数 xQueueGenericCreate()也与消息队列一样!只是参数或者其代表的意义有一些差异。

       所以我们可以理解为:信号量就是一种特殊的消息队列!由于我们只关注信号状态,不关注消息内容,这个队列就没有设置消息存储空间。

       其中,xSemaphoreCreateBinary()是一个宏定义,展开后调用xQueueGenericCreate(),也就是上一篇文章我们创建队列时候使用的函数,只是传递的参数不同。

       与二值信号量一样,xSemaphoreCreateCounting()展开后也是调用xQueueGenericCreate(),创建的计数信号量只有消息队列控制块结构体存储空间而没有消息存储空间 。

       删除信号量函数vSemaphoreDelete()是一个宏定义,其调用的是vQueueDelete()函数。删除信号量过程其实就是删除消息队列过程, 因为信号量其实就是特殊的,无法存储消息的消息队列。

       xSemaphoreGive()是一个用于释放信号量的宏, 真正的实现该过程是调用消息队列通用发送函数xQueueGenericSend()。释放信号量实际上是一次入队操作,并且阻塞时间为0,也就是释放信号量时,如果信号量计数值已满,就返回信号量释放错误。

       xSemaphoreTake()是一个用于获取信号量的宏, 真正的实现该过程是调用消息队列通用接收函数xQueueGenericReceive()。信号量获取实际上就是一次消息出队操作,所以我们也可以按照消息队列的接收机制来理解信号量的获取:当有任务试图获取信号量的时候,当且仅当信号量有效,也就是队列中存在可用信号量的时候,任务才能获取到信号量。

       如果信号量无效,在用户指定的阻塞超时时间中,该任务将保持阻塞状态以等待信号量有效。在阻塞超时等待的时间内,如果有其它任务或中断释放了有效的信号量,该任务将自动由阻塞态转移为就绪态。如果任务等待的时间超过了指定的阻塞时间,即使信号量中还是没有可用信号量,任务也会自动从阻塞态转移为就绪态。

       创建三个任务,task_example_1,task_example_2和task_example_3。其中task_example_1用于计时,每3s让task_example_2释放二值信号量,task_example_3用于信号量获取,在获取不到信号量的时候一直死等。主体代码如下:

       下图为运行后的串口输出结果:可以看到,cnt计数的时候,每3s释放一个二值信号量,然后立即就能被获取到,实现了Task2与Task3两个任务间的同步。

       创建计数信号量xSemaphoreCreateCounting(5,3),其中参数5表示最大可容纳五个状态,任务每获取一个信号量,信号量计数减一,每释放一个信号量,信号量计数加一。初始值为3,表示初始里面已经有了三个信号量。同样三个任务,task_example_3每ms获取一个信号量, task_example_2每2s释放一个信号量,task_example_1用于每1s的计时显示。程序主体代码如下:

       运行程序后串口输出如下:可以看到,初始计数信号量有3个,随着不断获取,计数信号量为空,之后就获取失败,只有计数信号量释放后才能继续获取。

       本文主要探索了二值信号量与计数信号量的原理及其使用方法,包括信号量的原理,信号量的运行机制,信号量与消息队列的比较,信号量的相关API函数,以及信号量的使用实验等。通过本文,不知道大家对第一节的几个问题,有没有自己的答案。有疑问的同学,欢迎评论区留言交流。原创不易,大家的点赞和关注是对我持续更新最大的鼓励,谢谢!也为坚持看到系列文章此处的你点赞!

       想要文中工程源码的同学,可以关注我的微信公众号:硬件电子与嵌入式小栈,留言:freertos源码 即可获取。同时我还整理了一些学习FreeRTOS实用的书籍资料,公众号留言:freertos资料 即可获取。公众号里也会不定期更新干货文章哦。

信号量测完整性测试五Display Port信号完整性测试

       DisplayPort(DP)接口,由PC及芯片制造商联盟开发,视频电子标准协会(VESA)标准化,广泛应用于笔记本电脑、显示器、家庭影院等设备。DP接口无认证、无授权金,用于视频源与显示器等设备间连接,支持携带音频、USB及其他数据。

       DP接口设计旨在取代传统VGA、DVI和FPD-Link接口,通过主动或被动适配器,可与HDMI和DVI等传统接口兼容。

       DP源代码测试所需设备包括Tektronix提供的DisplayPort测量工具,以及DisplayPort Essentials分析工具。用户可更改测量配置,调试/表征设备。

       测试设置步骤包括选择通道、示波器通道,执行自动化测试设置。测试选择面板允许选择测试、显示MOI文档、打开原理图/连接图、查看测试描述。采集面板展示采集参数,提供波形保存、删除功能,以及反嵌入/嵌入过滤器创建与应用。

       Tektronix DisplayPort应用程序提供全面报告功能,支持自定义生成准确报告。测试连接图根据DUT类型、测量类型变化,确保使用适当的连接图。

       采用Tektronix自动化解决方案执行DP DUT自动化测试,结合高性能实时示波器、探头或电缆、自动化软件、DP夹具、Aux Control Adapter与DPR-,实现DP源端物理层一致性自动化测试,提高测试效率,加速DP产品验证与市场化。

       如需更多信号完整性测试信息,可联系富士康检测创新中心业务经理廖善明,****:手机--(微信同号),邮箱shan-ming.liao@foxconn.com。

信号量(Semaphore)从入门到源码精通

       Semaphore是一个用于同步的工具类,在并发编程中扮演重要角色。PV操作是Semaphore的核心操作,P代表获取许可,V代表释放许可。P操作会检查许可是否可用,若可用则获取并返回,否则阻塞直到许可可用;V操作则释放一个许可。

       Semaphore的使用场景主要涉及线程间的同步,比如在资源有限的情况下控制多个线程对资源的访问。例如,当一个队列只允许一定数量的线程同时访问时,可以使用Semaphore来限制队列访问的线程数量。

       使用Semaphore的方式是通过构造方法创建实例,然后使用acquire和release方法来控制许可的获取和释放。acquire方法接受一个参数,表示需要获取的许可数量,默认为1,如果当前可用许可数不足,线程将阻塞直到许可可用。release方法则释放指定数量的许可,通常为1。

       要深入理解Semaphore源码,建议从AQS(AbstractQueuedSynchronizer)的基础开始。AQS提供了对同步器的基本抽象,Semaphore正是基于AQS实现的一种同步工具。

       对于具体源码分析,可以重点关注Semaphore的构造方法、获取锁方法(acquire)以及释放锁方法(release)。在源码中,acquire方法通过调用tryAcquireShared方法尝试获取许可,如果成功则返回true,否则阻塞直到许可可用。release方法则简单地调用releaseShared方法释放一个许可。

       深入学习Semaphore和并发编程,可以参考内核技术中文网的相关资源。该网站提供了一些学习资料和交流社区,包括Linux内核源码学习路线、视频教程、电子书以及实战项目和代码等。此外,网站还定期更新内核技术资料包,供学习者免费获取。

Freertos(4)----信号量

       Freertos中的二值信号量是一种用于任务间或任务与中断间同步的基本工具。它与互斥信号量类似,但不具备优先级继承机制。二值信号量的特点在于其队列仅有一项,意味着队列要么为空,要么已满,任务只需判断队列状态,无需关注具体消息内容。

       以温湿度传感器为例,如果采集数据和刷新屏幕的周期不同步,可能会浪费CPU资源。通过使用二值信号量,传感器数据采集完成后才会触发屏幕刷新,确保数据的准确性并节省CPU资源。在操作中,任务会根据信号量队列状态进入阻塞或非阻塞状态。

       Freertos通过在发送信号量时立即返回,避免了发送端和接收端的同步问题。创建二值信号量时,API与创建队列类似,只是设置消息数量为1,大小为0,类型为二值信号量队列。

       计数信号量则更注重资源管理,允许多个任务访问,但限制任务总数。当超过限制时,后续任务会阻塞,直到有任务释放资源。这种机制就像多个人上厕所的比喻,确保了资源访问的有序性。

       互斥信号量则提供了互斥和优先级继承特性,确保临界资源的独占访问,避免优先级翻转问题。在源码中,创建、释放和获取互斥信号量的过程同样体现了简化设计的理念。

       递归互斥信号量允许任务多次获取并释放,但必须是成对操作,且同样具有优先级继承机制。递归互斥信号量的API和源码实现同样遵循这一原则。

本文地址:http://abssuliao.net/html/86b91299001.html

copyright © 2016 powered by 皮皮网   sitemap