1.一大波国外高清量化网址正在袭来...
2.quant哪个最好
3.什么软件可以程序化交易?
4.准备学习下量化,量化量化发现市面上有很多量化平台,源码p源聚宽,平台米匡,量化量化BIGQUANT等等,源码p源大家使用感受怎么样?
5.Backtrader-系列教程-01-介绍
6.VNPY官方发布VNTrader,平台c# mstsc 源码VNPY性能大幅提升,量化量化python的源码p源便捷,C++性能加持, 期货CTP接口Python和PyQT框架
一大波国外高清量化网址正在袭来...
随着春节的平台结束,工作和学习的量化量化节奏回归正轨,我开始整理各类量化资源,源码p源为读者们提供更新内容。平台在海外资料的量化量化探索中,我发现了一些优质的源码p源量化资料,包括理论和源码,平台适合初学者入门。考虑到国内朋友们的需求,我想把这些国外的好资源介绍给大家,希望你们能从中汲取精华,提升自己。
对于国内逐渐兴起的量化交易,虽然起源于国外,但了解和学习的渠道在哪里呢?这里有一份推荐清单:《Best Quant Blogs and Websites》。这个网址是 feedly.com/i/top/quant-...
这个列表收录了个备受国外关注的量化网站和博客,如Quantocracy、Quantpedia和Quantstart等,都是经常被提及的资源。由于是国外站点,访问可能受限,但别担心,我已经将所有相关网址保存,只需回复公Z号『量化君也』的暗号即可获取。
除了上述资源,还有其他文章供你参考,如《Best Quant websites | An unconventional guide》和《TOP Useful Blogs and Websites for Quants》。网课联盟源码国外的量化资源丰富多样,国内的朋友可以通过这些站点学习到更多专业知识。
以QuantInsti为例,这个网站可以直接访问,无需登录,它的量化文章分类清晰,是入门学习的好去处。网站的Blogs标签下,你可以找到涵盖自动化交易、机器学习等个版块的深入教程,包括《Algorithmic Trading Strategies》、《Stock Market Data Analysis》等文章。
其中,机器学习版块尤其出色,不仅有理论讲解,还提供实践案例和Python代码,非常适合学习者。如果你想尝试使用神经网络、决策树等算法进行量化交易,这里也有相关的文章推荐,如《Neural Network In Python》和《Decision Tree For Trading Using Python》等。
总的来说,国外的量化资源丰富且实用,借助翻译工具,即使英语基础一般,也能无障碍学习。希望这些信息能帮助到你,欢迎关注『量化君也』公Z号,那里有更多的量化策略和知识分享。我是@quantkoala,期待与你一起交流和进步!
quant哪个最好
最好的Quant软件是Python的PyQuant和QuantLib。解释:
Python的PyQuant是一款非常强大的量化交易软件,它拥有强大的成语答题源码下载数据处理能力,能够实现复杂的交易策略。PyQuant提供了丰富的库和工具,使得开发者可以轻松地构建自己的交易系统。此外,Python语言的简洁性和可读性也使得代码维护更加容易。
QuantLib是一个跨平台的金融定量分析库,特别适用于开发复杂的金融衍生品模型。它包含了广泛的金融工具和算法,可以帮助用户进行风险评估、衍生品定价以及风险管理等任务。QuantLib还提供了强大的模拟功能,支持多种语言绑定,包括Python。这使得开发者可以灵活地选择使用哪种语言进行开发。此外,其开源的特性也使得用户可以自由地获取和使用其源代码,便于进行二次开发和定制。因此,对于量化分析来说,QuantLib是一个不可忽视的优秀工具。
什么软件可以程序化交易?
一、金字塔决策交易系统 金字塔决策交易系统是一款方便、稳定的量化交易平台。金字塔决策交易系统拥有海量的金融数据、多种策略研究平台、严谨易用的回测框架、稳定的模拟交易。面向交易速度设计,对接券商、期货、外盘实盘交易通道,同时支持全品种,跨市场的策略交易。为量化交易投资者提供行情、宝石星球游戏源码财务、回测、交易等一站式量化平台。 二、天勤量化 TqSdk是一个由信易科技发起并贡献主要代码的开源 python库。依托快期多年积累成熟的交易及行情服务器体系 ,TqSdk支持用户使用很少的代码量构建各种类型的量化交易策略程序,并提供包含历史数据-实时数据-开发调试-策略回测-模拟交易-实盘交易-运行监控-风险管理的全套解决方案。 TqSdk提供当前所有可交易合约从上市开始的全部Tick数据和K线数据;支持数十家期货公司的实盘交易;支持模拟交易;支持 Tick级和K线级回测,支持复杂策略回测;提供近百个 技术指标函数及源码;用户无须建立和维护数据库,行情和交易数据全在内存数据库 , 无访问延迟;优化支持 pandas 和 numpy 库;无强制框架结构,支持任意复杂度的策略,在一个交易策略程序中使用多个品种的K线/实时行情并交易多个品种。 三、交易开拓者TBQuant版 交易开拓者TBQuant版,是一款支持证券、期货、外盘市场的中高端专业投资者的专业交易软件。除多帐户交易终端功能外,还拥有丰富的程序化交易功能。用户可以简单、快速的将自己的交易思想转化为计算机代码,形成自己的交易策略,让计算机辅助用户执行交易。是国内最早能够接入证券、期货市场进行自动交易的程序化交易软件。 交易开拓者TBQuant版完备的数据库。涵盖宏观、企业财务数据、板块、复权等等基础数据;完整的事件驱动机制,支持OnBar、OnOrder等;数据源的自动对齐机制;丰富的数据类型,支持数组MAP等多种数据类型;强大的手机对比网站源码系统函数支持多元线性回归等;策略雷达和公式选股;策略生成器无须编码实现量化策略;期权的T型报价、组合报价和自定义报价;丰富的系统指数和自定义指数;后复权的全面支持。 四、MultiCharts MultiCharts,是专业程序化交易软件,支持股票、期货、期权,提供量化分析选股,能自由编写策略,实现准确的数据回测,稳定执行自动交易期货和股票。 Multicharts(简称 MC)提供国内期货(中金所、上期所、大商所、郑商所、上海能源)、国外期货(香港交易所、芝加哥交易所、伦敦交易所、新加坡交易所等)、国内A股、国内期权四大块的实时行情数据和交易接口。满足跨市策略组合的需求。Multicharts(简称 MC)历史行情数据用户可以直接下载到本地计算机,接收的实时行情数据直接存在本地,策略计算完全在用户的计算机完成,保证策略不会泄露;完善的策略间通信机制。准备学习下量化,发现市面上有很多量化平台,聚宽,米匡,BIGQUANT等等,大家使用感受怎么样?
探索量化投资之路:用户分享各平台体验 作为一位有着6年多量化投资经验的专业人士,我见证了量化投资市场的变迁。从最初的中低频策略,到如今的日间高频交易(T0),我尝试过市面上众多的量化平台,包括聚宽、米筐、BIGQUANT等,下面是我对这些平台的一些深入体验和见解。 年是量化投资的转折点,牛市与互联网的结合孕育了量化投资的热潮。各大平台,如米筐、聚宽,都是在那一年崭露头角,它们以Python编程环境、基础研究数据和活跃的社区吸引着投资者。那时的平台,不论是界面设计还是盈利模式,都以用户增长为核心,像互联网产品一样追求用户基础的积累。 比如米筐,它的Barra研究体系就像量化投资的入门指南。它通过提供一键式函数实现Barra功能,社区里则充斥着丰富的源码和实践案例,让新手可以轻松上手。然而,这种模式在年后开始面临挑战。市场波动和政策变化使得许多策略失效,量化投资的圣杯似乎不再那么简单易得。 优矿依托于通联数据,保持了其数据质量的优势。聚宽则走出了一条多元化道路,不仅服务券商T0业务,还拥有自己的策略团队,这在一定程度上意味着它们在寻求更深度的投研结合,但同时也放弃了部分线上用户。米筐则转向了机构服务,提供本地部署和自动化解决方案,继续深耕量化领域。 对于BIGQUANT,虽然我使用经验有限,但从市场反馈来看,其发展路径可能与上述平台有所不同。如果你正准备学习量化投资,我建议你通过这些早期的论坛去寻找资料,尽管一些社区可能已不再活跃,但早期的框架和理念仍值得了解。但请记住,寻找所谓的"圣杯"不再是关键,更重要的是理解和掌握投资的复杂性,理解财务基本面和有效因子的挖掘需要更深入的学习和实践。 总结来说,每个平台都有其特色和局限,而量化投资的真正挑战在于深度学习和持续适应市场变化。在这个过程中,意识到投资的困难是成长的第一步,也是通往成功的关键。Backtrader-系列教程--介绍
Backtrader是一个由Daniel Rodriguez在年1月日在GitHub上开源的Python框架,主要支持股票、期货、期权和加密货币等资产的量化回测与实盘交易,主要用于国外市场,国内用户可能需要定制化支持。Backtrader的第一个正式版本1.0.0.于年6月3日发布,至今已更新至1.9..版本,指标数量从最初的个增长到个,结合TA-Lib等第三方库,其指标计算能力非常强大。
Backtrader的成功源于作者的项目设计和持久努力,以及详实的文档支持和活跃的社区。官网backtrader.com提供了详细的文档和讨论区community.backtrader.com,供用户交流使用经验和量化策略。选择量化框架时,开源性、文档、社区活跃度和适应个人水平是关键,通过学习框架可以提升交易和编程理解。
对于量化投资爱好者,Backtrader是入门工具,从数据获取、清洗到策略编写和模拟交易,都能体验量化投资流程。但其源码复杂,涉及到元类和Python 2/3兼容性,以及代码风格问题。此外,由于开发者主要在国外,其一些功能设计可能与国内用户习惯不符,比如K线颜色的设置。对于新手,中文资源可能不够完整,笔者将通过AKShare和公众号数据科学实战提供Backtrader使用教程,结合AKShare数据接口实现策略,还会在知识星球数据科学家进行视频直播,欢迎关注和参与。
下面是一个利用AKShare数据和Backtrader进行回测的示例代码,更多内容将在后续文章中逐步介绍,包括面向对象编程、多股票回测、多时间粒度分析等内容,以及自定义指标和订单编写等深度讲解。
VNPY官方发布VNTrader,VNPY性能大幅提升,python的便捷,C++性能加持, 期货CTP接口Python和PyQT框架
VNTrader,由VNPY官方推出,基于MIT开源协议的国内期货量化交易开源软件。无需付费,任何机构和个人均可免费下载使用。
VNTrader客户端开源代码,支持国内家期货公司的CTP接入,兼容股指期货、期权及商品期货的程序化交易和量化交易仿真回测。
VNPY3.0开源地址提供,量化交易首选CTP,CTP程序化交易开源项目推荐VNPY。结合C++底层仿真技术,VNPY3.0成为程序化交易的强大工具。
Python的便捷性和C++的高性能完美结合,VNPY3.0面向国内商品期货、股指期货实现CTP接口,实现“精简、高性能、精细化回测、功能强大、入门更容易”的特点。
基于CTP接口的开源性,VNPY3.1是针对商品期货CTP接口的GUI窗口程序,支持多个Python策略组成策略池,具备回测、多周期量化交易功能。
强强联合,VNPY与VirtualAPI、Gucps合作,未来VNTrader将集成更多功能。VNPY性能再次升级,全新架构,Python的便捷加上C++性能加持,性能提升%以上。最新版本命名为VNTrader,属于VNPY官方发布的重点全新架构产品。
VNPY项目源代码在gitee.com/vnpypro/vnpy开源,提供C++代码和Python全部开源。这是性能提升显著的大版本更新。
欲了解更多,访问VNPY官方网站,或查看VNPY知乎视频zhihu.com/org/vnpy/zvid...。
量化交易-vnpy_efinance-VeighNa框架数据服务接口
我们之前对vnpy_ctastrategy相关回测源码进行了解析:
回首凡尘不做仙:VNPY源码分析1-vnpy_ctastrategy-运行回测
回首凡尘不做仙:VNPY源码分析2-vnpy_ctastrategy-撮合成交
回首凡尘不做仙:VNPY源码分析3-vnpy_ctastrategy-计算策略统计指标
相关历史数据可以通过各类数据服务的适配器接口(datafeed)下载,目前vn.py支持以下接口:
然而,上述接口需要注册或付费才能获取数据。
为了帮助初学者更好地理解和学习量化交易以及vn.py框架,我开发了基于efinance数据接口的vn.py的datafeed。
开源地址为:github.com/hgy/vnpy...
编译安装:
下载源代码后,解压并在cmd中运行:
dist目录下vnpy_efinance-x.x.x-py3-none-any.whl包
使用:
安装完成后,在vn.py框架的trader目录中的setting.py中进行配置:
注意:此处只需配置datafeed.name,username和password无需配置。
配置完成后,可以通过以下示例进行调用:
同时,这里分享一个efinance数据下载及入库方法:
然而,efinance在获取分钟级别数据方面并不友好。对于需要获取分钟级别数据的初学者来说,我们可以使用天勤免费版的数据接口:
回首凡尘不做仙:量化交易-数据获取-vnpy_tqsdk免费版
请问国内哪家量化平台比较好?
推荐澎博财经的真格量化。云端运行,行情和交易速度都经过专业优化。
支持期货、期权和ETF的tick级别回测。
有完善的文档和培训教程。
支持编程语言为Python2.7和Python3.5.
上手很快,对用户非常友好。