【源码安装有yml】【修改网页源码背景颜色】【指标不显示线条源码】反向传播源码_反向传播源码是什么

2024-12-29 10:01:30 来源:egg源码分析 分类:知识

1.PyTorch进阶1:C++扩展
2.强化学习ppo算法源码
3.图解大模型训练之:Megatron源码解读2,反向反模型并行
4.Pytorch源码剖析:nn.Module功能介绍及实现原理
5.卷积神经网络
6.3d稀疏卷积——spconv源码剖析(五)

反向传播源码_反向传播源码是传播传播什么

PyTorch进阶1:C++扩展

       本文介绍如何使用C++扩展来优化PyTorch模型性能,以实现LLTM(Long-Long-Term-Memory)循环单元为例。源码源码通过自定义扩展,反向反可以显著提升模型在Python解释器和CUDA核心加载方面的传播传播效率。

       实现LLTM模型时,源码源码源码安装有yml直接通过PyTorch的反向反Module或Function实现前向传播可能已足够,但为了进一步优化性能,传播传播可以使用C++或CUDA重写关键部分。源码源码C++扩展有预先构建和即时构建两种风格。反向反

       预先构建风格通过setuptools的传播传播setup.py脚本完成,简化了配置和管理混合C++/CUDA扩展的源码源码编译流程。预先构建风格在编译时完成所有步骤,反向反适用于模型优化中需要频繁调用的传播传播特定操作。

       即时构建则通过torch.utils.cpp_extension.load()函数实现,源码源码提供了一种简便的编译和加载扩展方法,无需维护单独的构建文件。即时构建在首次运行时可能需要额外时间来编译扩展,但后续加载速度较快,尤其当源码未改变时。

       在实现C++操作时,关键在于编写前向传播和反向传播函数。反向传播函数通常需要额外实现,以计算损失关于每个输入的导数。这些函数被整合进torch.autograd.Function以创建Python绑定。

       绑定C++扩展到Python使用pybind,确保了Python和C++代码之间的修改网页源码背景颜色无缝交互。设置目录结构和导入torch库后,将C++扩展导入PyTorch,从而能够从Python调用C++函数。

       性能对比方面,C++版本相较于纯Python实现展现出显著加速,尤其是在前向传播环节。反向传播的加速效果可能不明显,但整体上,PyTorch的自动微分引擎通过C++实现,提供高效的操作流。

       在GPU设备上,通过CUDA张量实现性能提升更为明显。ATen后端的设备抽象特性使得同样的代码能够在CPU和GPU上运行,并利用GPU优化的实现加速关键操作。对于大规模计算,利用CUDA核心编写特定的核心代码可以进一步提升性能。

       总的来说,使用C++扩展优化PyTorch模型性能是一种有效策略,尤其是在模型计算密集型场景中,能够显著提升运行效率。通过选择预先构建或即时构建风格,开发者可以根据具体需求和场景灵活选择实现方式。

强化学习ppo算法源码

       在大模型训练的四个阶段中,强化学习阶段常常采用PPO算法,深入理解PPO算法与语言模型的融合可通过以下内容进行学习。以下代码解析主要参考了一篇清晰易懂的指标不显示线条源码文章。

       通过TRL包中的PPO实现,我们来逐步分析其与语言模型的结合过程。核心代码涉及到question_tensors、response_tensors和rewards,分别代表输入、模型生成的回复和奖励模型对输入加回复的评分。

       训练过程中,trainer.step主要包含以下步骤:

       首先,将question_tensors和response_tensors输入语言模型,获取all_logprobs(每个token的对数概率)、logits_or_none(词表概率)、values(预估收益)和masks(掩码)。其中,如果没有设置return_logits=True,logits_or_none将为None,若设置则为[batch_size, response_length, vocab_size]。

       接着,将输入传递给参考语言模型,得到类似的结果。

       计算reward的过程涉及reference model和reward model,最终的奖励rewards通过compute_rewards函数计算,参考公式1和2。

       计算优势advantage,依据公式3和4调整。

       在epoch和batch中,对question_tensors和response_tensors再次处理,app 蓝牙通信源码并设置return_logits=True,进入minbatch训练。

       训练中,loss分为critic_loss(评论家损失,参考公式8)和actor_loss(演员损失,参考公式7),两者通过公式9合并,反向传播更新语言模型参数。

       PPO相较于TRPO算法有两大改进:PPO-Penalty通过拉格朗日乘数法限制策略更新的KL散度,体现在actor_loss中的logprobs - old_logprobs;PPO-Clip则在目标函数中设定阈值,确保策略更新的平滑性,pg_losses2(加上正负号)部分体现了这一点。

       对于初学者来说,这个过程可能有些复杂,但理解和实践后,将有助于掌握PPO在语言模型中的应用。参考资源可继续深入学习。

图解大模型训练之:Megatron源码解读2,模型并行

       源码解读系列将深入探讨Megatron的预训练部分代码,聚焦于模型并行策略。在上一篇文章中,我们详细介绍了如何在分布式环境中初始化模型,包括按照DP/TP/PP对进程进行分组,并为每个进程分配GPU。接下来,我们将探索如何将模型进行切分,jsp试题管理系统源码并将其整合到分布式环境定义好的DP/TP/PP组中。

       在Megatron中,通过预先设定的DP/TP/PP组,我们能够将模型进行有效的切割。这种切割方法既考虑了模型的并行性,又兼顾了内存和计算资源的优化。为了实现这一目标,我们需要在CPU上定义并初始化模型,然后将其搬运到当前进程所对应的GPU上。

       模型切割的核心思想是面向进程编程,这意味着我们的脚本处理的是发生在单个进程上的任务。这样做的好处是,我们只需维护一份脚本,然后将其部署到不同机器的GPU上执行,从而实现全局并行计算。然而,每个进程处理的模型部分不同,比如在GPT模型中,预处理层涉及词嵌入计算,而后续层则涉及到softmax和损失函数的计算。为了解决模型差异性问题,我们可以通过进程ID来控制随机种子的设定,确保模型初始化的一致性。

       在分布式训练中,随机种子的设定至关重要,它直接影响到模型的复现性。例如,当我们采用激活检查点技术来节省内存时,在反向传播过程中需要重新计算前向传播得到的激活值,此时就需要确保模型能够完全复现前向过程的初始化结果。通过设定不同的随机种子,我们能够确保每个模型部分在切割后仍能保持初始化的独立性和一致性。

       在模型切割部分,我们有两种主要的初始化方式:先进行整体初始化再进行切割(称为“CPU上的初始化”),以及直接在GPU上进行局部初始化(称为“在GPU上的初始化”)。这两种方式的核心区别在于随机种子的设定策略。正确选择随机种子的策略,对于确保模型的复现性至关重要。

       模型并行框架在Megatron中通过预定义的函数实现,例如在megatron/training.py中的pretrain函数。这个函数作为模型并行的入口,主要包含了模型架构定义、模型切割、设置优化器和学习率调整等关键步骤。在具体实现中,模型切割主要通过定义预处理层(pre_process)和后处理层(post_process)来完成,这有助于确保模型切割后首尾层和中间层的架构一致性。

       在分布式模型中,如CodeGeeX,模型的切割遵循特定的策略,以确保模型在不同GPU上的并行执行。每个进程对应模型的一部分,通过AllReduce操作确保模型输出的完整性,以便下一层能够接收正确的输入。同时,每个进程负责独立计算模型的一部分,从而实现高效的并行处理。

       在Megatron中,模型切割部分涉及到一系列的类定义和函数实现,包括MegatronModule、Embedding、VocabParallelEmbedding、ParallelSelfAttention等。这些类和函数在模型切割、并行层和交叉熵计算等方面发挥着关键作用。例如,MegatronModule类确保了模型的输入和输出层共用词嵌入,以满足特定的并行要求。同时,模型中的注意力层(如ParallelSelfAttention)通过“列切割”和“行切割”策略实现高效的并行计算。

       模型的最后一层,即交叉熵的计算,同样通过类定义实现。在Megatron中,交叉熵计算通过平行化处理来优化内存使用和加速计算。通过将计算逻辑进行精简和优化,Megatron能够实现高效的并行交叉熵计算,以满足大规模模型训练的需求。

       总之,Megatron的模型并行策略通过一系列的代码实现,旨在优化大规模模型的训练过程,提高计算效率和资源利用。通过合理地切割模型、设置随机种子、实现并行层和交叉熵计算,Megatron能够在分布式环境中实现高效、稳定的模型训练。

Pytorch源码剖析:nn.Module功能介绍及实现原理

       nn.Module作为Pytorch的核心类,是构建模型的基础。它提供了一系列功能,包括记录模型的参数,实现网络的前向传播,加载和保存模型数据,以及进行设备和数据类型转换等。这些功能在模型的训练和应用中起到关键作用。

       在训练与评估模式间切换,模块的行为会有所不同,如rrelu、dropout、batchnorm等操作在两种模式下表现不同。可学习的参数,如权重和偏置,需要通过梯度下降进行更新。非学习参数,比如batchnorm的running_mean,是训练过程中的统计结果。_buffers包含的Tensor不作为模型的一部分保存。

       模块内部包含一系列钩子(hook)函数,用于在特定的前向传播或反向传播阶段执行自定义操作。子模块列表用于存储模型中的所有子模块。

       魔术函数__init__在声明对象时自动调用,优化性能的关键在于使用super().__setattr__而非直接赋值。super调用父类的方法,避免不必要的检查,提高效率。使用register_buffer为模块注册可变的中间结果,例如BatchNorm的running_mean。register_parameter用于注册需要梯度下降更新的参数。

       递归应用函数用于对模型进行操作,如参数初始化。可以将模型移动到指定设备,转换数据类型,以及注册钩子函数以实现对网络的扩展和修改。

       调用魔术方法__call__执行前向传播。nn.Module未实现forward函数,子类需要提供此方法的具体实现。对于线性层等,forward函数定义了特定的运算流程。从检查点加载参数时,模块自动处理兼容性问题,确保模型结构与参数值的兼容。

       模块的__setattr__方法被重写,以区别对待Parameter、Module和Buffer。当尝试设置这些特定类型的属性时,执行注册或更新操作。其他属性的设置遵循标准的Python行为。

       模块的save方法用于保存模型参数和状态,确保模型结构和参数值在不同设备间转移时的一致性。改变训练状态(如将模型切换到训练或评估模式)是模块管理过程的重要组成部分。

卷积神经网络

       1、二维互相关运算

        二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。

        2、二维卷积层

        卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

        二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。

       3、特征图与感受野

        二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素x的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做x的感受野(receptive field)。

        以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为2×2的输出记为Y,将Y与另一个形状为2×2的核数组做互相关运算,输出单个元素z。那么,z在Y上的感受野包括Y的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

        4、填充和步幅

        我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。

        4.1 填充(padding)

        是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。

       å¦‚果原输入的高和宽是 和 ,卷积核的高和宽是 和 ,在高的两侧一共填充 行,在宽的两侧一共填充 列,则输出形状为:

                                                                       )

        我们在卷积神经网络中使用奇数高宽的核,比如3×3,5×5的卷积核,对于高度(或宽度)为大小为2k+1的核,令步幅为1,在高(或宽)两侧选择大小为k的填充,便可保持输入与输出尺寸相同。

        4.2 步幅(stride)

        在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。

       ä¸€èˆ¬æ¥è¯´ï¼Œå½“高上步幅为 ,宽上步幅为 时,输出形状为:

                                                 

        如果  ,那么输出形状将简化为:

                                                                  

        更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是:(nh/sh)×(nw/sw)

                                                                                      

        当 时,我们称填充为p;当 时,我们称步幅为s。

        5、多输入通道和多输出通道

        之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是h和w(像素),那么它可以表示为一个3×h×w的多维数组,我们将大小为3的这一维称为通道(channel)维。

        5.1 多输入通道

        卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。

       5.2 å¤šè¾“出通道

        卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为ci和co,高和宽分别为kh和kw。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×kh×kw的核数组,将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kw。

        对于输出通道的卷积核,我们提供这样一种理解,一个ci×kh×kw的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的ci×kh×kw的核数组,不同的核数组提取的是不同的特征。

        5.3 1x1卷积层

        最后讨论形状为1×1的卷积核,我们通常称这样的卷积运算为1×1卷积,称包含这种卷积核的卷积层为1×1卷积层。图5展示了使用输入通道数为3、输出通道数为2的1×1卷积核的互相关计算。

       1×1卷积核可在不改变高宽的情况下,调整通道数。1×1卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价。

       6、卷积层与全连接层的对比

        二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:

        一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。

        二是卷积层的参数量更少。不考虑偏置的情况下,一个形状为(ci,co,h,w)的卷积核的参数量是ci×co×h×w,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是(c1,h1,w1)和(c2,h2,w2),如果要用全连接层进行连接,参数数量就是c1×c2×h1×w1×h2×w2。使用卷积层可以以较少的参数数量来处理更大的图像。

        X=torch.rand(4,2,3,5)

        print(X.shape)

       conv2d=nn.Conv2d(in_channels=2,out_channels=3,kernel_size=(3,5),stride=1,padding=(1,2))

       Y=conv2d(X)

       print('Y.shape: ',Y.shape)

        print('weight.shape: ',conv2d.weight.shape)

        print('bias.shape: ',conv2d.bias.shape)

        输出:

        torch.Size([4, 2, 3, 5])

        Y.shape:  torch.Size([4, 3, 3, 5])

        weight.shape:  torch.Size([3, 2, 3, 5])

        bias.shape:  torch.Size([3])

        7、池化

       7.1 二维池化层

        池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图6展示了池化窗口形状为2×2的最大池化。

       äºŒç»´å¹³å‡æ± åŒ–的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为p×q的池化层称为p×q池化层,其中的池化运算叫作p×q池化。

        池化层也可以在输入的高和宽两侧填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。

        在处理多通道输入数据时,池化层对每个输入通道分别池化,但不会像卷积层那样将各通道的结果按通道相加。这意味着池化层的输出通道数与输入通道数相等。

        CNN网络中另外一个不可导的环节就是Pooling池化操作,因为Pooling操作使得feature map的尺寸变化,假如做2×2的池化,假设那么第l+1层的feature map有个梯度,那么第l层就会有个梯度,这使得梯度无法对位的进行传播下去。其实解决这个问题的思想也很简单,就是把1个像素的梯度传递给4个像素,但是需要保证传递的loss(或者梯度)总和不变。根据这条原则,mean pooling和max pooling的反向传播也是不同的。

        7.2 mean pooling

        mean pooling的前向传播就是把一个patch中的值求取平均来做pooling,那么反向传播的过程也就是把某个元素的梯度等分为n份分配给前一层,这样就保证池化前后的梯度(残差)之和保持不变,还是比较理解的,图示如下:

       mean pooling比较容易让人理解错的地方就是会简单的认为直接把梯度复制N遍之后直接反向传播回去,但是这样会造成loss之和变为原来的N倍,网络是会产生梯度爆炸的。

        7.3 max pooling

        max pooling也要满足梯度之和不变的原则,max pooling的前向传播是把patch中最大的值传递给后一层,而其他像素的值直接被舍弃掉。那么反向传播也就是把梯度直接传给前一层某一个像素,而其他像素不接受梯度,也就是为0。所以max pooling操作和mean pooling操作不同点在于需要记录下池化操作时到底哪个像素的值是最大,也就是max id。

        源码中有一个max_idx_的变量,这个变量就是记录最大值所在位置的,因为在反向传播中要用到,那么假设前向传播和反向传播的过程就如下图所示。

       7.4 Pytorch 实现池化层

        我们使用Pytorch中的nn.MaxPool2d实现最大池化层,关注以下构造函数参数:

        kernel_size â€“ the size of the window to take a max over

        stride â€“ the stride of the window. Default value is kernel_size

        padding â€“ implicit zero padding to be added on both sides

        forward函数的参数为一个四维张量,形状为 ,返回值也是一个四维张量,形状为 ,其中N是批量大小,C,H,W分别表示通道数、高度、宽度。

        X=torch.arange(,dtype=torch.float).view(1,2,4,4)

        pool2d=nn.MaxPool2d(kernel_size=3,padding=1,stride=(2,1))

        Y=pool2d(X)

        print(X)

        print(Y)

        练习

        1、假如你用全连接层处理一张 \times ×的彩色(RGB)图像,输出包含个神经元,在使用偏置的情况下,参数数量是:

             ç­”:图像展平后长度为3××,权重参数和偏置参数的数量是3× × × + =。

       2、假如你用全连接层处理一张×的彩色(RGB)图像,卷积核的高宽是3×3,输出包含个通道,在使用偏置的情况下,这个卷积层共有多少个参数:

            ç­”:输入通道数是3,输出通道数是,所以参数数量是×3×3×3+=。

       3、conv2d = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=3, padding=2),输入一张形状为3××的图像,输出的形状为:

            答:输出通道数是4,上下两侧总共填充4行,卷积核高度是3,所以输出的高度是 - 3 + 1=−3+1=,宽度同理可得。

       4、关于卷积层,以下哪种说法是错误的:

        A.1×1卷积可以看作是通道维上的全连接

        B.某个二维卷积层用于处理形状为3××的输入,则该卷积层无法处理形状为3××的输入

        C.卷积层通过填充、步幅、输入通道数、输出通道数等调节输出的形状

        D .两个连续的3×3卷积核的感受野与一个5×5卷积核的感受野相同

        答:选B,对于高宽维度,只要输入的高宽(填充后的)大于或等于卷积核的高宽即可进行计算。

       the first layer is a 3 × 3 convolution, the second is a fully connected layer on top of the 3 × 3 output grid of the first layer (see Figure 1). Sliding this small network over the input activation grid boils down to replacing the 5 × 5 convolution with two layers of 3 × 3 convolution.

        我们假设图片是5*5的

        我们使用5*5的卷积核对其卷积,步长为1,得到的结果是:(5-5)/1+1=1

        然后我们使用2个卷积核为3*3的,这里的两个是指2层:

        第一层3*3:

        得到的结果是(5-3)/1+1=3

        第二层3*3:

        得到的结果是(3-3)/1+1=1

        所以我们的最终得到结果感受野大小和用5*5的卷积核得到的结果大小是一样的!!!

        5、关于池化层,以下哪种说法是错误的:

        A.池化层不参与反向传播

        B.池化层没有模型参数

        C.池化层通常会减小特征图的高和宽

        D.池化层的输入和输出具有相同的通道数

        答:A

        选项1:错误,池化层有参与模型的正向计算,同样也会参与反向传播

        选项2:正确,池化层直接对窗口内的元素求最大值或平均值,并没有模型参数参与计算

        选项3:正确

        选项4:正确

       å‚考文献:

       /

       /question//answer/

       /s/1PBrX...,并使用提取码:2s进行下载。在学习过程中,数值微分法虽然简便易行,但计算成本高昂,尤其在处理大量参数时。反向传播则提供了一种更为高效的方法来计算梯度,尽管实现反向传播算法时可能会遇到错误,但通过梯度检验(gradient checking)方法,可以验证反向传播的实现是否正确。

本文地址:http://abssuliao.net/html/82e483095087.html 欢迎转发