皮皮网
皮皮网

【小爱朗读引擎url源码】【peg 源码】【毛笔源码】ue场景源码_ue场景怎么搭建

来源:2022互助盘源码 发表时间:2024-12-28 20:26:12

1.游戏引擎随笔 0x29:UE5 Lumen 源码解析(一)原理篇
2.UE 八叉树Octree2源码分析
3.UE4学习笔记(1):UE源码下载编译+安卓打包
4.UE4源码剖析——Actor蓝图之CDO与SCS
5.UE4源码剖析——异步与并行 中篇 之 Thread
6.[UE5.1] StateTree 使用与源码分析(二)

ue场景源码_ue场景怎么搭建

游戏引擎随笔 0x29:UE5 Lumen 源码解析(一)原理篇

       实时全局光照的场景场景追求一直是图形渲染界的焦点。随着GPU硬件光线追踪技术的源码兴起,Epic Games的搭建Unreal Engine 5推出了Lumen,一个结合SDF、场景场景Voxel Lighting、源码Radiosity等技术的搭建小爱朗读引擎url源码软件光线追踪系统。Lumen的场景场景实现极其复杂,涉及个Pass,源码近5.6万行C++代码和2万行Shader,搭建与Nanite、场景场景Virtual Shadow Map等系统紧密集成,源码并支持混合使用硬件和软件光线追踪。搭建

       本系列将逐步解析Lumen,场景场景从原理入手。源码Lumen以简化间接光照(主要由漫反射构成)为核心,搭建采用Monte Carlo积分方法估算,利用Ray Tracing获取Radiance,生成Irradiance,最终得到光照值。它的核心是Radiance的计算、缓存和查询,以及这些操作的高效整合。

       数学原理上,Lumen依赖渲染方程,通过离散采样近似无限积分。它主要处理Diffuse部分,利用Lambert Diffuse和Ray Tracing获取Radiance。加速结构方面,Lumen利用SDF Ray Marching在无需硬件支持的情况下实现高效的SWRT。

       Surface Cache是关键技术,通过预生成的低分辨率材质属性图集,高效获取Hit Point的Material Attribute,结合SDF Tracing,为Lumen提供了实时性能。Radiance Cache则是将Direct Lighting结果保存,便于后续的光照计算和全局光照的无限反弹。

       Lumen构建了一个由DF和Surface Cache构成的低精度场景表示,即Lumen Scene,负责Mesh DF更新、Global DF合并和Surface Cache更新。peg 源码通过Screen Space Probe的自适应放置,Lumen实现了高效的光照追踪和降噪处理。

       总体流程包括Lumen Scene更新、Lighting计算和Final Gather,涉及众多数据流和过程,通过3D Texture和Spatial Filtering进行降噪和Light Scattering的处理。后续篇章将深入源码,以更详细的方式揭示Lumen的实现细节和优化策略。

UE 八叉树Octree2源码分析

       UE中八叉树Octree2源码分析,本文旨在深入理解UE八叉树的具体实现。八叉树概念广泛熟悉,但初次接触UE实现时仍需思考。UE八叉树简化应用,多数直接使用方便。本文针对UE4.至UE5.1版本八叉树源码进行详细解析。

       UE八叉树主要结构包括:TreeNodes、ParentLinks、TreeElements、FreeList、RootNodeContext和MinLeafExtent。TreeNodes存储节点信息,每个FNode记录当前节点元素数量及子节点Index;ParentLinks记录节点父节点ID;TreeElements存储元素数据;FreeList记录空闲FNode下标;RootNodeContext和MinLeafExtent与八叉树构造相关,用于确定节点半径。

       UE八叉树构造过程依赖AddElement方法,实现在AddElementInternal中。首先判断节点是否为叶子节点。若无子节点且元素数量超过预设阈值,或节点半径小于MinLeafExtent,则创建子节点。否则,直接将元素加入当前节点。若需创建子节点,清空当前节点元素,分配八个子节点,递归处理非叶节点情况。

       RemoveElement方法根据ElementId移除元素。首先在TreeElements中移除元素,然后从节点向上遍历,检查元素数量过少的毛笔源码节点,进行塌缩重构,将子节点元素移入当前节点。

       UE八叉树查询接口包括FindElement、FindElementsWithBoundsTest等,核心目的是遍历节点和子节点以满足查询条件。UE八叉树用于高效空间数据处理,通过Octree2类声明实现。例如,PrecomputedLightVolume类定义ElementType和OctreeSemantics,便于特定应用使用。

       UE八叉树内存管理关键在于TreeElement数组,使用TInlineAllocator或FDefaultAllocator需考虑应用场景。空间数据结构如四叉树、八叉树等在空间划分算法中具有重要应用,优化碰撞检测及实现复杂场景。

UE4学习笔记(1):UE源码下载编译+安卓打包

       注:该笔记以UE4..2在windows平台为例,vs版本为

       1.关联github和Epic账户

       要在github上获取UE4源码需要先关联账户,否则找不到源码,网页

       按照官网提供流程即可完成 GitHub上的虚幻引擎 - Unreal Engine

       记得确认邮件,否则还是(当初就是忘记了,卡了好一会儿)

       2.下载UE4源码

       在 Releases · EpicGames/UnrealEngine (github.com)中选择自己需要的版本(我使用的是4..2),这步很简单,但需要注意的是还需要将Commit.gitdeps.xml文件也一并下载,用于替换同名文件(有些版本则没有这样的文件),不替换的话后续会报错(之后步骤中会提到)

       解压后目录如下:

       3.执行bat文件

       (1)点击运行setup.bat,没有替换Commit.gitdeps.xml文件可能会出现如下问题:

       (2)点击运行GenerateProjectFiles.bat,此过程可能会出现如下问题:

       未找到框架 .NETFramework Version=v4.6.2

       只需要在VS Installer中选中安装就行:

       完成后会生成UE4.sln文件

       4.生成

       VS打开UE4.sln,开始生成:

       但是生成过程中我出现了这样的问题:

       UE4 fatal error C: 编译器限制: 达到内部堆限制

       error C: 超过了 PCH 的虚拟内存范围问题解决

       我出现这样问题的原因是我的C盘空间不够大(分区的时候给的比较少),托管系统设置在C盘,导致无法分配足够的虚拟内存,设置为空间足够的盘即可。

       步骤:电脑->属性->高级系统设置->高级->性能设置->高级->更改

       OK,成功编译完成

       5.安卓打包

       该过程有官方文档,并且比较繁琐,直接给出链接:

       设置虚幻的Android SDK和NDK | 虚幻引擎文档 (unrealengine.com)

       UE部署到Android以及杂症的解决 - 知乎 (zhihu.com)

       我就提一下自己遇到的问题,在UE4中进行安卓打包的时候遇到了这样的问题:

       原因在于SetupAndroid.bat中,SDK Platform的版本选择是,而在UE项目设置->平台 - Android SDK中的SDK API Levle默认选择latest。但是彩带 源码我安装AS的时候默认给我安装了最新的Android API (此时latest指向的是版本),导致冲突。解决方法是UE项目设置中手动设置指定版本,或者在AS中卸载高于版本的Android API。

       OK,打包成功!!!

       6.打开游戏

       但是,是的,还有但是(都最后一步了,还有问题OVO!!!),在手机上下载安装,打开后是这样的:

       原来是因为打包除了生成apk文件还生成了obb,至于Google Play Store Key应该就是一个密钥了。

       解决方法是在UE项目设置->Android中勾选“将游戏数据打包至.apk中”,我们可以看到对这个勾选项的解释:

       行,勾选后重新打包,成功运行:

UE4源码剖析——Actor蓝图之CDO与SCS

       在UE的日常使用中,蓝图(UBlueprint)是我们接触最多的资产类型。每个蓝图在创建时需要选择一个父类,这决定了蓝图的类型,比如Actor蓝图、Component蓝图、Widget蓝图、动作蓝图等。以Actor蓝图为例,本文将深入探讨蓝图的基础架构,并学习如何通过代码读取蓝图资产在蓝图编辑器中的属性值。此外,本文还将重点介绍如何利用SCS框架管理新组件,并在运行时加载这些组件。

       在实际开发中,我们经常需要对蓝图进行处理,例如在大型项目中,制定一套资源规范并开发一套资源检测工具。这些工具往往需要遍历特定目录下的hiveselect源码蓝图并执行某些条件判断和处理。本文将帮助大家了解如何实现这些功能。

       **实战需求**:

       1. **例1**:要求所有放置在“Buildings”文件夹下的蓝图必须包含`StaticMeshComponent`组件,且`StaticMesh`字段不能为空。

       2. **例2**:要求“Cars”文件夹下的所有蓝图的`SceneComponent`组件移动性必需为`Movable`。

       **蓝图的父类与Actor蓝图**:

       1. **蓝图的父类**:创建蓝图时,编辑器面板中选择的父类决定蓝图的类型,例如`TestActorChild2`的父类为`TestActorChild1`,而`TestActorChild1`的父类为`TestBlueprintActor`。

       2. **Actor蓝图**:若蓝图的父类层级链最顶层是`Actor 类`,则该蓝图为`Actor蓝图`。

       **蓝图产生类**:蓝图的`_C`后缀代表蓝图产生类,它用于在编译时生成C++类,包含蓝图中的信息。

       **蓝图类(UBlueprint)**:加载蓝图包时,通过`LoadObject`函数获取到的是`UBlueprint`类。

       **蓝图骨骼类(SkeletonGeneratedClass)**:以`SKEL_`前缀和`_C`后缀加载,表示蓝图的基础信息,通常在编辑器中修改时会重新生成。

       **蓝图产生类(GeneratedClass)**:仅以`_C`为后缀加载,用于在运行时创建蓝图对象。

       **前后缀声明**:`UBlueprint.h`中的`GetBlueprintClassNames`函数定义了这些前缀。

       **Actor蓝图产生类的实例化与阶段拆分**:

       1. **CDO的构建**:`ClassDefaultObject`是每个类的默认对象,用于提供默认属性值和行为。

       2. **SCS组件附加**:通过蓝图编辑器的组件面板添加组件,这些组件存储在`SimpleConstructionScript`中,用于在运行时添加组件。

       **CDO与SCS**:

       - **CDO**:存储默认属性值与行为,节省数据传输和存储,支持配置化。

       - **SCS**:简化组件添加过程,通过蓝图编辑器直观操作组件。

       **需求回顾与实现**:通过遍历CDO和SCS,判断组件属性值,实现特定条件的检测,如`StaticMeshComponent`的`StaticMesh`字段是否为空。

       本文从实际需求出发,全面介绍了蓝图的基本概念、内部分类、构建流程以及如何利用SCS管理组件。希望本文内容能帮助开发者更深入地理解蓝图的工作原理,提高资源管理与组件处理的效率。

UE4源码剖析——异步与并行 中篇 之 Thread

       我们知道UE中的异步框架分为TaskGraph与Thread两种,上篇教程我们学习了TaskGraph,它擅长处理有依赖关系的短任务;本篇教程我们将学习Thread,它与TaskGraph相反,它更擅长于处理长任务。而下一篇文章,我们则会承接Thread,去学习一下引擎中一些重要的线程。

       Thread擅长处理长任务,从长任务生命周期这个层面来看,我们可以先把长任务分为两类:常驻型长任务与非常驻型长任务。

       常驻型长任务侧重于并行,通常用于监听式服务,例如网络传输,使用单独的线程对网络进行监听,每当有网络数据包到达时,线程接收并处理后,不会立即结束,而是重置部分状态,继续监听,等待下一轮数据包。

       非常驻型长任务侧重于异步,通常用于数据处理,例如主线程为了提高性能,避免卡顿,会将一些重负载的运算任务分发给分线程处理,可能分批给多条分线程,主线程继续运行其他逻辑。任务处理完成后,将结果返回给主线程,分线程可销毁。

       接下来,我们通过两个例子学习Thread的使用。

       计算由N到M(N和M为大数字)所有数字的和。使用Thread异步调用,将计算操作交由分线程执行,计算完成后再通知主线程结果,代码实现如下:

       逻辑分为两部分:启动分线程计算数字和,使用Async函数,参数为EAsyncExecution::Thread,创建新线程执行。学习Async函数用法,该函数返回TFuture对象,代表未来状态,当前无法获取结果,但在未来某个时刻状态变为Ready,此时可通过TFuture获取结果。

       主线程注册回调,等待分线程计算完成,使用TFuture的Then函数,完成时触发注册的回调,也可使用Wait系列函数等待计算完成。

       接下来学习常驻型任务使用。

       定义玩家血量上限点,当前点,当血量未满时,每0.2秒恢复1点血量。代码实现分为创建生命治疗仪FRunnable对象、重写Run函数、创建FRunnableThread线程、测试恢复功能和释放线程资源。

       生命治疗仪创建与测试完整代码如下,可验证生命恢复功能和暂停与恢复。

       UE4中的FRunnable与FRunnableThread提供创建常驻型任务所需接口。无论是常驻型还是非常驻型,底层实现相同,都是使用FRunnableThread线程。

       FRunnableThread线程结构包含标识符、逻辑功能、效率与性能、辅助调试字段。线程创建与生命周期分为创建FRunnable类对象、创建FRunnableThread对象两步,通过FRunnable的生命周期管理实现线程运行与停止。

       UE4线程管理流程包括继承并创建FRunnable类对象、创建FRunnableThread对象,生命治疗仪线程创建代码。

       UE4中的几种异步方式底层使用线程实现,学习了线程类型、创建、生命周期、销毁方法,为下篇学习引擎特殊线程打下基础。

[UE5.1] StateTree 使用与源码分析(二)

       深入探讨UE5.1中的StateTree,从初始化到Tick更新数据的流程,以及其背后的源码分析。

       一、StateTree的初始化流程:

       1.1、筛选未激活的Entity:UMassStateTreeActivationProcessor执行初始化时,首先会筛选出所有没有打上FMassStateTreeActivatedTag标记的Entity。

       1.2、遍历并创建上下文:接着,对这些Entity进行遍历,检查StateTreeInstanceList中是否已存在相应的StateTreeInstance。若不存在,则创建FMassStateTreeExecutionContext上下文。

       1.3、注入Fragment:将状态树所需Fragment注入,并进行验证。

       1.4、启动状态树:通过FMassStateTreeExecutionContext的Start()函数正式开始状态树的运行。

       1.5、初始化数据与确定ActivateStates:在FStateTreeExecutionContext::Start()函数中初始化数据,并确定ActivateStates数组,这代表从根节点到激活状态的所有状态。

       1.6、检查所有State的Conditions:遍历所有State,检查其条件,若有子节点,则递归检查。

       1.7、完成初始化:回到UMassStateTreeActivationProcessor,为已初始化的Entity打上Tag,完成整个初始化过程。

       二、状态树的Tick更新:

       2.1、获取并判断状态:FStateTreeExecutionContext::Tick()作为外部调用刷新状态树的接口,首先获取当前正在运行的State,并判断整个树是否仍在运行。

       2.2、刷新Evaluators:刷新所有State的Evaluators。

       2.3、刷新并处理Tasks:刷新ActiveStates中的所有State任务,重点关注TickStatus的逻辑。一旦出现返回EStateTreeRunStatus::Failed的Task,整个Tick结果将失败。如果所有Task中存在非EStateTreeRunStatus::Running状态,则根据状态返回结果。若所有Task都在EStateTreeRunStatus::Running状态中,则Tick结果为Running。

       2.4、处理状态完成与切换:如果最终Tick结果不是EStateTreeRunStatus::Running,则执行StateCompleted()函数,调用所有相关Task的StateCompleted函数。同时,检查当前State的所有Transitions,根据设置触发状态切换。

       三、使用技巧与注意事项:

       3.1、Task的InstanceData可以共享给整个State,根据Category设置决定。

       3.2、设置为Output的参数可被外部使用,Task的Output参数仅限当前State内部共享。

       3.3、Input参数的右值可引用当前State中的其他Task或Evaluator的Output参数,实现灵活的数据共享。

       3.4、Task的执行顺序决定了Output参数的使用时机,确保Task的顺序正确。

UE5引擎Paper2D插件上的IntMargin.h文件源码解读分析

       深入探索Unreal Engine 5 (UE5) 的Paper2D插件时,我们发现IntMargin.h文件中定义了FIntMargin结构体,它用于在整数网格上描述2D区域周围空间的一种数据结构。FIntMargin是一个简单而直观的结构体,用于存储和操作2D界面元素的边距。它采用结构体形式,包含四个公共成员变量:Left、Top、Right和Bottom,使用int类型存储,通过UPROPERTY宏标记为蓝图可读写,归类于Appearance类别。

       FIntMargin设计简洁,仅用于存储相关数据,无封装或继承特性。UE5的代码风格倾向于使用结构体来表示简单的数据集合。FIntMargin包含了四个构造函数,分别用于不同初始化场景,便于快速实例化。结构体通过重载+和-运算符,实现边距的加法和减法操作,简化布局调整中的边距计算。同时,==和!=运算符也被重载,用于比较两个FIntMargin实例是否相等。

       GetDesiredSize方法返回一个FIntPoint结构体,表示由当前边距定义的总尺寸,强化了FIntMargin在布局计算中的功能性。IntMargin.h文件的架构体现了UE5编码风格中的简洁性、直观性和高度的可读性,符合其对代码清晰度、性能和易用性的整体设计哲学。

       FIntMargin结构体虽然简单,但它是UE5中Paper2D插件架构中的基本构建块之一,体现了UE5的设计原则。通过理解此类基本组件,开发者可以深入掌握UE5架构的关键步骤。在未来的版本中,UE5可能会对FIntMargin进行进一步的迭代和优化,以保持其在不断演进的技术环境中的领先地位。

相关栏目:知识