欢迎访问皮皮网官网
皮皮网

【青岛全网营销源码下载】【源码立方 编程猫】【团购源码php】哈希值玩法源码搭建_哈希算法源码

时间:2024-12-27 13:37:43 分类:休闲 来源:私人云php源码

1.��ϣֵ�淨Դ��
2.宇宙最强开源破解密码利器:Hashcat 第一篇
3.String源码分析(1)--哈希篇
4.HashMap实现原理
5.mimikatz源码分析-lsadump模块(注册表)
6.Redis7.0源码阅读:哈希表扩容、哈希缩容以及rehash

哈希值玩法源码搭建_哈希算法源码

��ϣֵ�淨Դ��

       HashMap在后端面试中经常被问及,值玩比如默认初始容量、法源法源加载因子和线程安全性等问题。码搭码通常,建哈这些问题能对答如流,希算青岛全网营销源码下载表明对HashMap有较好的哈希理解。然而,值玩近期团队的法源法源技术分享中,我从两个角度获得了一些新见解,码搭码现在分享给大家。建哈

       首先,希算让我们探讨如何找到比初始容量值大的哈希最小的2的幂次方整数。通常,值玩使用默认构造器时,法源法源HashMap的初始容量为,加载因子为0.。这样做可能导致在数据量大时频繁进行扩容,影响性能。因此,通常会预估容量并使用带容量的构造器创建。通过分析源码,我们可以得知HashMap数组部分长度范围为[0,2^]。要找到比初始容量大的最小的2的幂次方整数,我们需重点关注tableSizeFor方法。此方法巧妙地设计,当输入的容量本身为2的整数次幂时,返回该容量;否则,返回比输入容量大的最小2的整数次幂。此设计旨在确保容量始终为2的整数次幂,从而优化哈希操作,避免哈希冲突。在获取key对应的数组下标时,通过key的哈希值与数组长度-1进行与运算,这种方法依赖于容量为2的整数次幂的特性,以确保哈希值的分散性。

       容量为2的整数次幂的关键在于,它允许通过与运算高效地定位key对应的数组下标。容量不是2的整数次幂时,与运算后的哈希值可能会导致位数为0的冲突,影响数据定位的准确性。tableSizeFor方法在计算过程中,首先对输入的容量进行-1操作,以避免容量本身就是2的整数次幂时,计算结果为容量的2倍。接着,通过连续的移位与或操作,找到比输入容量大的最小的2的整数次幂。这种方法确保了内存的有效利用,避免了不必要的扩容。

       下面,源码立方 编程猫让我们通过一个示例来详细解释算法中的移位与或操作。假设初始容量n为一个位的整数,例如:n = xxx xxxxxxxx xxxxxxxx xxxxxxxx(x表示该位上是0还是1,具体值不关心)。首先,执行n |= n >> 1操作,用n本身与右移一位后的n进行或操作,可以将n的最高位的1及其紧邻的右边一位置为1。接下来,重复此操作,进行n |= n >> 2、n |= n >> 4、n |= n >> 8和n |= n >> 。最后,将n与最大容量进行比较,如果大于等于2^,则返回最大容量;否则,返回n + 1,找到比n大的最小的2的整数次幂。

       在实践中,这确保了在给定容量范围内高效地找到合适的容量值。例如,输入时,输出为,即比大的最小的2的整数次幂。

       接下来,我们探讨HashMap在处理key时进行哈希处理的特殊操作。在执行put操作时,首先对key进行哈希处理。在源码中,可以看到执行了(h = key.hashCode()) ^ (h >> )的操作。这个操作将key的hashCode值与右移位后的值进行异或操作,将哈希值的高位和低位混合计算,以生成更离散的哈希值。通过演示,我们可以发现,当三个不同的key生成的hashCode值的低位完全相同、高位不同时,它们在数组中的下标会相同,导致哈希冲突。通过异或操作,我们解决了这个问题,使得经过哈希处理后的key能被更均匀地分布在数组中,提高了数据的分散性,减少了哈希冲突。

       总结来说,这两个点揭示了HashMap在容量和哈希处理上的一些巧妙设计,这些设计提高了数据结构的效率和性能。理解这些原理不仅有助于解决面试问题,还能在实际工作中借鉴这些思想,团购源码php优化数据存储和访问效率。希望我的讲解能帮助大家掌握这两个知识点,如有任何疑问,欢迎留言或私聊。通过深入研究和实践,我们可以更好地理解和利用HashMap这一强大的数据结构。

宇宙最强开源破解密码利器:Hashcat 第一篇

       Hashcat被誉为宇宙最强的开源密码破解工具,拥有针对Windows、Mac和Linux系统的版本,支持多种计算核心如CPU、GPU、APU、DSP和FPGA。它能处理的hash散列算法多样,能够破解rar、office、pdf、windows账户、wifi等多种密码。本文将指导您在Windows 系统下安装和配置Hashcat,并展示具体密码破解方法和密码保护技巧。

       开始,访问Hashcat官网下载最新版本的软件包,这里推荐使用v6.1.1,确保下载hashcat binaries,它已经包含了直接运行的exe可执行文件。对于hashcat sources,您需要利用类似的MinGW工具将其源码编译成可执行文件。下载完毕后,直接在软件包主目录下使用命令行运行Hashcat。运行时请确保已切换到Hashcat主目录。使用测试电脑配置进行Hashcat的探索。

       在进行密码破解时,John the Ripper是一个常用的辅助工具,用于获取加密文件的Hash值。下载对应版本john-1.9.0,并配置所需的python和perl环境。通过命令行运行John the Ripper进行密码破解,注意调整相应的环境变量。

       使用Hashcat破解密码的步骤包括查看命令行帮助和使用Hashcat的wiki文档。前者提供常用命令的概览,后者则详细介绍攻击类型、哈希类型对照表、掩码设置和平台支持。如有疑问,可以直接联系Hashcat团队。

       接下来,通过指令`hashcat -b`测试笔记本的算力。针对rar、office、情侣主题源码搭建pdf等加密文件,采用掩码攻击方法,而zip文件则使用字典攻击。具体操作包括创建测试rar文件,使用John the Ripper获取哈希值,然后在Hashcat中输入命令进行破解。结果将实时显示在控制台上,并输出到指定文件中。

       本文展示了使用Hashcat对rar、zip、pdf和word加密文件的破解过程,包括字典破解和掩码破解。在实际应用中,应首先尝试字典破解,当现有字典无效时,可考虑使用暴力或掩码组合破解。随着密码复杂度的增加,破解难度将成指数级增长。未来,将继续深入研究Hashcat的密码破解技术,并分享密码设置的最佳实践。

String源码分析(1)--哈希篇

       本文基于JDK1.8,从Java中==符号的使用开始,解释了它判断的是对象的内存地址而非内容是否相等。接着,通过分析String类的equals()方法实现,说明了在比较字符串时,应使用equals()而非==,因为equals()方法可以准确判断字符串内容是否相等。

       深入探讨了String类作为“值类”的特性,即它需要覆盖Object类的equals()方法,以满足比较字符串时逻辑上相等的需求。同时,强调了在覆盖equals()方法时也必须覆盖hashCode()方法,以确保基于散列的集合(如HashMap、HashSet和Hashtable)可以正常工作。解释了哈希码(hashcode)在将不同的输入映射成唯一值中的作用,以及它与字符串内容的关系。

       在分析String类的hashcode()方法时,介绍了计算哈希值的公式,包括使用这个奇素数的原因,以及其在计算性能上的优势。进一步探讨了哈希碰撞的概念及其产生的影响,提出了防止哈希碰撞的有效方法之一是扩大哈希值的取值空间,并介绍了生日攻击这一概念,解释了它如何在哈希空间不足够大时制造碰撞。

       最后,总结了哈希碰撞与散列表性能的关系,以及在满足安全与成本之间找到平衡的重要性。提出了确保哈希值的iot开放源码最短长度的考虑因素,并提醒读者在理解和学习JDK源码时,可以关注相关公众号以获取更多源码分析文章。

HashMap实现原理

        HashMap在实际开发中用到的频率非常高,面试中也是热点。所以决定写一篇文章进行分析,希望对想看源码的人起到一些帮助,看之前需要对链表比较熟悉。

        以下都是我自己的理解,欢迎讨论,写的不好轻喷。

        HashMap中的数据结构为散列表,又名哈希表。在这里我会对散列表进行一个简单的介绍,在此之前我们需要先回顾一下 数组、链表的优缺点。

        数组和链表的优缺点取决于他们各自在内存中存储的模式,也就是直接使用顺序存储或链式存储导致的。无论是数组还是链表,都有明显的缺点。而在实际业务中,我们想要的往往是寻址、删除、插入性能都很好的数据结构,散列表就是这样一种结构,它巧妙的结合了数组与链表的优点,并将其缺点弱化(并不是完全消除)

        散列表的做法是将key映射到数组的某个下标,存取的时候通过key获取到下标(index)然后通过下标直接存取。速度极快,而将key映射到下标需要使用散列函数,又名哈希函数。说到哈希函数可能有人已经想到了,如何将key映射到数组的下标。

        图中计算下标使用到了以下两个函数:

        值得注意的是,下标并不是通过hash函数直接得到的,计算下标还要对hash值做index()处理。

        Ps:在散列表中,数组的格子叫做桶,下标叫做桶号,桶可以包含一个key-value对,为了方便理解,后文不会使用这两个名词。

        以下是哈希碰撞相关的说明:

        以下是下标冲突相关的说明:

        很多人认为哈希值的碰撞和下标冲突是同一个东西,其实不是的,它们的正确关系是这样的,hashCode发生碰撞,则下标一定冲突;而下标冲突,hashCode并不一定碰撞

        上文提到,在jdk1.8以前HashMap的实现是散列表 = 数组 + 链表,但是到目前为止我们还没有看到链表起到的作用。事实上,HashMap引入链表的用意就是解决下标冲突。

        下图是引入链表后的散列表:

        如上图所示,左边的竖条,是一个大小为的数组,其中存储的是链表的头结点,我们知道,拥有链表的头结点即可访问整个链表,所以认为这个数组中的每个下标都存储着一个链表。其具体做法是,如果发现下标冲突,则后插入的节点以链表的形式追加到前一个节点的后面。

        这种使用链表解决冲突的方法叫做:拉链法(又叫链地址法)。HashMap使用的就是拉链法,拉链法是冲突发生以后的解决方案。

        Q:有了拉链法,就不用担心发生冲突吗?

        A:并不是!由于冲突的节点会不停的在链表上追加,大量的冲突会导致单个链表过长,使查询性能降低。所以一个好的散列表的实现应该从源头上减少冲突发生的可能性,冲突发生的概率和哈希函数返回值的均匀程度有直接关系,得到的哈希值越均匀,冲突发生的可能性越小。为了使哈希值更均匀,HashMap内部单独实现了hash()方法。

        以上是散列表的存储结构,但是在被运用到HashMap中时还有其他需要注意的地方,这里会详细说明。

        现在我们清楚了散列表的存储结构,细心的人应该已经发现了一个问题:Java中数组的长度是固定的,无论哈希函数是否均匀,随着插入到散列表中数据的增多,在数组长度不变的情况下,链表的长度会不断增加。这会导致链表查询性能不佳的缺点出现在散列表上,从而使散列表失去原本的意义。为了解决这个问题,HashMap引入了扩容与负载因子。

        以下是和扩容相关的一些概念和解释:

        Ps:扩容要重新计算下标,扩容要重新计算下标,扩容要重新计算下标,因为下标的计算和数组长度有关,长度改变,下标也应当重新计算。

        在1.8及其以上的jdk版本中,HashMap又引入了红黑树。

        红黑树的引入被用于替换链表,上文说到,如果冲突过多,会导致链表过长,降低查询性能,均匀的hash函数能有效的缓解冲突过多,但是并不能完全避免。所以HashMap加入了另一种解决方案,在往链表后追加节点时,如果发现链表长度达到8,就会将链表转为红黑树,以此提升查询的性能。

mimikatz源码分析-lsadump模块(注册表)

       mimikatz是一款内网渗透中的强大工具,本文将深入分析其lsadump模块中的sam部分,探索如何从注册表获取用户哈希。

       首先,简要了解一下Windows注册表hive文件的结构。hive文件结构类似于PE文件,包括文件头和多个节区,每个节区又有节区头和巢室。其中,巢箱由HBASE_BLOCK表示,巢室由BIN和CELL表示,整体结构被称为“储巢”。通过分析hive文件的结构图,可以更直观地理解其内部组织。

       在解析过程中,需要关注的关键部分包括块的签名(regf)和节区的签名(hbin)。这些签名对于定位和解析注册表中的数据至关重要。

       接下来,深入解析mimikatz的解析流程。在具备sam文件和system文件的情况下,主要分为以下步骤:获取注册表system的句柄、读取计算机名和解密密钥、获取注册表sam的句柄以及读取用户名和用户哈希。若无sam文件和system文件,mimikatz将直接通过官方API读取本地机器的注册表。

       在mimikatz中,会定义几个关键结构体,包括用于标识操作的注册表对象和内容的结构体(PKULL_M_REGISTRY_HANDLE)以及注册表文件句柄结构体(HKULL_M_REGISTRY_HANDLE)。这些结构体包含了文件映射句柄、映射到调用进程地址空间的位置、巢箱的起始位置以及用于查找子键和子键值的键巢室。

       在获取注册表“句柄”后,接下来的任务是获取计算机名和解密密钥。密钥位于HKLM\SYSTEM\ControlSet\Current\Control\LSA,通过查找键值,将其转换为四个字节的密钥数据。利用这个密钥数据,mimikatz能够解析出最终的密钥。

       对于sam文件和system文件的操作,主要涉及文件映射到内存的过程,通过Windows API(CreateFileMapping和MapViewOfFile)实现。这些API使得mimikatz能够在不占用大量系统资源的情况下,方便地处理大文件。

       在获取了注册表系统和sam的句柄后,mimikatz会进一步解析注册表以获取计算机名和密钥。对于密钥的获取,mimikatz通过遍历注册表项,定位到特定的键值,并通过转换宽字符为字节序列,最终组装出密钥数据。

       接着,解析过程继续进行,获取用户名和用户哈希。在解析sam键时,mimikatz首先会获取SID,然后遍历HKLM\SAM\Domains\Account\Users,解析获取用户名及其对应的哈希。解析流程涉及多个步骤,包括定位samKey、获取用户名和用户哈希,以及使用samKey解密哈希数据。

       对于samKey的获取,mimikatz需要解密加密的数据,使用syskey作为解密密钥。解密过程根据加密算法(rc4或aes)有所不同,但在最终阶段,mimikatz会调用系统函数对数据进行解密,从而获取用户哈希。

       在完成用户哈希的解析后,mimikatz还提供了一个额外的功能:获取SupplementalCreds。这个功能可以解析并解密获取对应用户的SupplementalCredentials属性,包括明文密码及哈希值,为用户提供更全面的哈希信息。

       综上所述,mimikatz通过解析注册表,实现了从系统中获取用户哈希的高效功能,为内网渗透提供了强大的工具支持。通过深入理解其解析流程和关键结构体的定义,可以更好地掌握如何利用mimikatz进行深入的安全分析和取证工作。

Redis7.0源码阅读:哈希表扩容、缩容以及rehash

       当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。

       扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。

       扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。

       哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。

       rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。

       在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。

       综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。

Hermes源码分析(二)——解析字节码

        前面一节 讲到字节码序列化为二进制是有固定的格式的,这里我们分析一下源码里面是怎么处理的

        这里可以看到首先写入的是魔数,他的值为

        对应的二进制见下图,注意是小端字节序

        第二项是字节码的版本,笔者的版本是,也即 上图中的4a

        第三项是源码的hash,这里采用的是SHA1算法,生成的哈希值是位,因此占用了个字节

        第四项是文件长度,这个字段是位的,也就是下图中的为0aa,转换成十进制就是,实际文件大小也是这么多

        后面的字段类似,就不一一分析了,头部所有字段的类型都可以在BytecodeFileHeader.h中看到,Hermes按照既定的内存布局把字段写入后再序列化,就得到了我们看到的字节码文件。

        这里写入的数据很多,以函数头的写入为例,我们调用了visitFunctionHeader方法,并通过byteCodeModule拿到函数的签名,将其写入函数表(存疑,在实际的文件中并没有看到这一部分)。注意这些数据必须按顺序写入,因为读出的时候也是按对应顺序来的。

        我们知道react-native 在加载字节码的时候需要调用hermes的prepareJavaScript方法, 那这个方法做了些什么事呢?

        这里做了两件事情:

        1. 判断是否是字节码,如果是则调用createBCProviderFromBuffer,否则调用createBCProviderFromSrc,我们这里只关注createBCProviderFromBuffer

        2.通过BCProviderFromBuffer的构造方法得到文件头和函数头的信息(populateFromBuffer方法),下面是这个方法的实现。

        BytecodeFileFields的populateFromBuffer方法也是一个模版方法,注意这里调用populateFromBuffer方法的是一个 ConstBytecodeFileFields对象,他代表的是不可变的字节码字段。

        细心的读者会发现这里也有visitFunctionHeaders方法, 这里主要为了复用visitBytecodeSegmentsInOrder的逻辑,把populator当作一个visitor来按顺序读取buffer的内容,并提前加载到BytecodeFileFields里面,以减少后面执行字节码时解析的时间。

        Hermes引擎在读取了字节码之后会通过解析BytecodeFileHeader这个结构体中的字段来获取一些关键信息,例如bundle是否是字节码格式,是否包含了函数,字节码的版本是否匹配等。注意这里我们只是解析了头部,没有解析整个字节码,后面执行字节码时才会解析剩余的部分。

        evaluatePreparedJavaScript这个方法,主要是调用了HermesRuntime的 runBytecode方法,这里hermesPrep时上一步解析头部时获取的BCProviderFromBuffer实例。

        runBytecode这个方法比较长,主要做了几件事情:

        这里说明一下,Domain是用于垃圾回收的运行时模块的代理, Domain被创建时是空的,并跟随着运行时模块进行传播, 在运行时模块的整个生命周期内都一直存在。在某个Domain下创建的所有函数都会保持着对这个Domain的强引用。当Domain被回收的时候,这个Domain下的所有函数都不能使用。

        未完待续。。。

为什么HashMap是线程不安全的

       这是《Java程序员进阶之路》专栏的第篇,我们来聊聊为什么HashMap是线程不安全的。

、多线程下扩容会死循环

       众所周知,HashMap是通过拉链法来解决哈希冲突的,也就是当哈希冲突时,会将相同哈希值的键值对通过链表的形式存放起来。

       JDK7时,采用的是头部插入的方式来存放链表的,也就是下一个冲突的键值对会放在上一个键值对的前面(同一位置上的新元素被放在链表的头部)。扩容的时候就有可能导致出现环形链表,造成死循环。

       resize方法的源码:

//newCapacity为新的容量voidresize(intnewCapacity){ //小数组,临时过度下Entry[]oldTable=table;//扩容前的容量intoldCapacity=oldTable.length;//MAXIMUM_CAPACITY为最大容量,2的次方=1<<if(oldCapacity==MAXIMUM_CAPACITY){ //容量调整为Integer的最大值0x7fffffff(十六进制)=2的次方-1threshold=Integer.MAX_VALUE;return;}//初始化一个新的数组(大容量)Entry[]newTable=newEntry[newCapacity];//把小数组的元素转移到大数组中transfer(newTable,initHashSeedAsNeeded(newCapacity));//引用新的大数组table=newTable;//重新计算阈值threshold=(int)Math.min(newCapacity*loadFactor,MAXIMUM_CAPACITY+1);}

       transfer方法用来转移,将小数组的元素拷贝到新的数组中。

voidtransfer(Entry[]newTable,booleanrehash){ //新的容量intnewCapacity=newTable.length;//遍历小数组for(Entry<K,V>e:table){ while(null!=e){ //拉链法,相同key上的不同值Entry<K,V>next=e.next;//是否需要重新计算hashif(rehash){ e.hash=null==e.key?0:hash(e.key);}//根据大数组的容量,和键的hash计算元素在数组中的下标inti=indexFor(e.hash,newCapacity);//同一位置上的新元素被放在链表的头部e.next=newTable[i];//放在新的数组上newTable[i]=e;//链表上的下一个元素e=next;}}}

       注意e.next=newTable[i]和newTable[i]=e这两行代码,就会将同一位置上的新元素被放在链表的头部。

       扩容前的样子假如是下面这样子。

       那么正常扩容后就是下面这样子。

       假设现在有两个线程同时进行扩容,线程A在执行到newTable[i]=e;被挂起,此时线程A中:e=3、next=7、e.next=null

       线程B开始执行,并且完成了数据转移。

       此时,7的next为3,3的next为null。

       随后线程A获得CPU时间片继续执行newTable[i]=e,将3放入新数组对应的位置,执行完此轮循环后线程A的情况如下:

       执行下一轮循环,此时e=7,原本线程A中7的next为5,但由于table是线程A和线程B共享的,而线程B顺利执行完后,7的next变成了3,那么此时线程A中,7的next也为3了。

       采用头部插入的方式,变成了下面这样子:

       好像也没什么问题,此时next=3,e=3。

       进行下一轮循环,但此时,由于线程B将3的next变为了null,所以此轮循环应该是最后一轮了。

       接下来当执行完e.next=newTable[i]即3.next=7后,3和7之间就相互链接了,执行完newTable[i]=e后,3被头插法重新插入到链表中,执行结果如下图所示:

       套娃开始,元素5也就成了弃婴,惨~~~

       不过,JDK8时已经修复了这个问题,扩容时会保持链表原来的顺序,参照HashMap扩容机制的这一篇。

、多线程下put会导致元素丢失

       正常情况下,当发生哈希冲突时,HashMap是这样的:

       但多线程同时执行put操作时,如果计算出来的索引位置是相同的,那会造成前一个key被后一个key覆盖,从而导致元素的丢失。

       put的源码:

finalVputVal(inthash,Kkey,Vvalue,booleanonlyIfAbsent,booleanevict){ Node<K,V>[]tab;Node<K,V>p;intn,i;//步骤①:tab为空则创建if((tab=table)==null||(n=tab.length)==0)n=(tab=resize()).length;//步骤②:计算index,并对null做处理if((p=tab[i=(n-1)&hash])==null)tab[i]=newNode(hash,key,value,null);else{ Node<K,V>e;Kk;//步骤③:节点key存在,直接覆盖valueif(p.hash==hash&&((k=p.key)==key||(key!=null&&key.equals(k))))e=p;//步骤④:判断该链为红黑树elseif(pinstanceofTreeNode)e=((TreeNode<K,V>)p).putTreeVal(this,tab,hash,key,value);//步骤⑤:该链为链表else{ for(intbinCount=0;;++binCount){ if((e=p.next)==null){ p.next=newNode(hash,key,value,null);//链表长度大于8转换为红黑树进行处理if(binCount>=TREEIFY_THRESHOLD-1)//-1for1sttreeifyBin(tab,hash);break;}//key已经存在直接覆盖valueif(e.hash==hash&&((k=e.key)==key||(key!=null&&key.equals(k))))break;p=e;}}//步骤⑥、直接覆盖if(e!=null){ //existingmappingforkeyVoldValue=e.value;if(!onlyIfAbsent||oldValue==null)e.value=value;afterNodeAccess(e);returnoldValue;}}++modCount;//步骤⑦:超过最大容量就扩容if(++size>threshold)resize();afterNodeInsertion(evict);returnnull;}

       问题发生在步骤②这里:

if((p=tab[i=(n-1)&hash])==null)tab[i]=newNode(hash,key,value,null);

       两个线程都执行了if语句,假设线程A先执行了tab[i]=newNode(hash,key,value,null),那table是这样的:

       接着,线程B执行了tab[i]=newNode(hash,key,value,null),那table是这样的:

       3被干掉了。

、put和get并发时会导致get到null

       线程A执行put时,因为元素个数超出阈值而出现扩容,线程B此时执行get,有可能导致这个问题。

       注意来看resize源码:

finalNode<K,V>[]resize(){ Node<K,V>[]oldTab=table;intoldCap=(oldTab==null)?0:oldTab.length;intoldThr=threshold;intnewCap,newThr=0;if(oldCap>0){ //超过最大值就不再扩充了,就只好随你碰撞去吧if(oldCap>=MAXIMUM_CAPACITY){ threshold=Integer.MAX_VALUE;returnoldTab;}//没超过最大值,就扩充为原来的2倍elseif((newCap=oldCap<<1)<MAXIMUM_CAPACITY&&oldCap>=DEFAULT_INITIAL_CAPACITY)newThr=oldThr<<1;//doublethreshold}elseif(oldThr>0)//initialcapacitywasplacedinthresholdnewCap=oldThr;else{ //zeroinitialthresholdsignifiesusingdefaultsnewCap=DEFAULT_INITIAL_CAPACITY;newThr=(int)(DEFAULT_LOAD_FACTOR*DEFAULT_INITIAL_CAPACITY);}//计算新的resize上限if(newThr==0){ floatft=(float)newCap*loadFactor;newThr=(newCap<MAXIMUM_CAPACITY&&ft<(float)MAXIMUM_CAPACITY?(int)ft:Integer.MAX_VALUE);}threshold=newThr;@SuppressWarnings({ "rawtypes","unchecked"})Node<K,V>[]newTab=(Node<K,V>[])newNode[newCap];table=newTab;}

       线程A执行完table=newTab之后,线程B中的table此时也发生了变化,此时去get的时候当然会get到null了,因为元素还没有转移。

       为了便于大家更系统化地学习Java,二哥已经将《Java程序员进阶之路》专栏开源到GitHub上了,大家只需轻轻地star一下,就可以和所有的小伙伴一起打怪升级了。

       GitHub地址:/itwanger/toBeBetterJavaer

copyright © 2016 powered by 皮皮网   sitemap