1.#解 算法初步:散列(hash)
2.哈希算法与MD5、算法算法SHA
3.哈希算法的源码原理
4.常见的哈希算法有哪些?
#解 算法初步:散列(hash)
散列算法是一种常用的数据处理技术,其核心在于通过函数将数据转换为唯一的代码整数,以提高查询效率。算法算法在面对特定问题时,源码比如快速判断M个数是代码特殊macd源码 指标否在N个数中出现过,常规的算法算法遍历方法时间复杂度高达O(NM),效率低下。源码
一个更有效的代码方法是使用数组,通过预先计算每个元素的算法算法散列值,查询时可以直接通过散列值定位,源码将时间复杂度降低到O(N+M)。代码例如,算法算法对于N个字符串中的源码查询,可以利用散列函数快速找出查询字符串出现的代码次数。
散列的本质是通过一个函数(散列函数)对输入(key)进行转换,得到一个唯一的哈希值(Hash(key))。理解这个概念的关键在于散列函数的设计,它需要保证输出的孔雀石sdr 源码哈希值能够尽量唯一地对应输入。动画形式的教程能帮助加深理解。
以三位大写英文字母组成的字符串为例,我们可以通过散列解决查询字符串在N个字符串中出现的次数问题。在实际应用中,推荐使用C++标准库模板库中的散列函数,这将大大简化代码并提高效率。
总的来说,散列是一种强大的工具,它用空间换取时间,对于处理大量数据时的查询问题,提供了高效且实用的解决方案。
哈希算法与MD5、SHA
哈希算法(Hash Algorithm)又称散列算法、散列函数、哈希函数,是一种从任何一种数据中创建小的数字“指纹”的方法。哈希算法将数据重新打乱混合,重新创建一个哈希值。一问多情源码
哈希算法通常有以下几个特点:
哈希算法主要用来保障数据真实性(即完整性),即发信人将原始消息和哈希值一起发送,收信人通过相同的哈希函数来校验原始数据是否真实。
注:
哈希算法主要有MD4、MD5、SHA。
冲突避免:
宇宙中原子数大约在的次方到次方之间,所以2的次方有足够的空间容纳所有的可能,算法好的情况下冲突碰撞的概率很低。
MD5
1、数据填充
对消息进行数据填充,使消息的长度对取模得,设消息长度为X,即满足X mod =。根据此公式得出需要填充的数据长度。
填充方法:在消息后面进行填充,填充第一位为1,其余为0。自助打印 源码怎么找
2、添加消息长度
在第一步结果之后再填充上原消息的长度,可用来进行的存储长度为位。如果消息长度大于,则只使用其低位的值,即(消息长度 对 取模)。
在此步骤进行完毕后,最终消息长度就是的整数倍。
3、数据处理
准备需要用到的数据:
4个常数: A = 0x, B = 0x0EFCDAB, C = 0xBADCFE, D = 0x; 4个函数:F(X,Y,Z)=(X & Y) | ((~X) & Z); G(X,Y,Z)=(X & Z) | (Y & (~Z)); H(X,Y,Z)=X ^ Y ^ Z; I(X,Y,Z)=Y ^ (X | (~Z)); 把消息分以位为一分组进行处理,每一个分组进行4轮变换,以上面所说4个常数为起始变量进行计算,重新输出4个变量,以这4个变量再进行下一分组的运算,如果已经是最后一个分组,则这4个变量为最后的结果,即MD5值。
代码实现: MD5算法C代码实现
SHA-1
年2月日,智能自助仓库源码下载CWI Amsterdam与Google宣布了一个成功的SHA-1碰撞攻击[][],发布了两份内容不同但SHA-1散列值相同的PDF文件作为概念证明。
SHA1的分组过程
对于任意长度的明文,SHA1的明文分组过程与MD5相类似,首先需要对明文添加位数,使明文总长度为(mod)位。在明文后添加位的方法是第一个添加位是l,其余都是0。然后将真正明文的长度(没有添加位以前的明文长度)以位表示,附加于前面已添加过位的明文后,此时的明文长度正好是位的倍数。与MD5不同的是SHA1的原始报文长度不能超过2的次方,另外SHA1的明文长度从低位开始填充。
经过添加位数处理的明文,其长度正好为位的整数倍,然后按位的长度进行分组(block),可以划分成L份明文分组,我们用Y0,Y1,……YL-1表示这些明文分组。对于每一个明文分组,都要重复反复的处理,这些与MD5是相同的。
对于位的明文分组,SHA1将其再分成份子明文分组(sub-block),每份子明文分组为位,我们使用M[k](k= 0, 1,……)来表示这份子明文分组。之后还要将这份子明文分组扩充到份子明文分组,我们记为W[k](k= 0, 1,……),扩充的方法如下。
W t = M t , 当0≤t≤
W t = ( W t-3 ⊕ W t-8⊕ W t-⊕ W t- ) «< 1, 当≤t≤
SHA1有4轮运算,每一轮包括个步骤(一共步),最后产生位摘要,这位摘要存放在5个位的链接变量中,分别标记为A、B、C、D、E。这5个链接变量的初始值以进制位表示如下。
A=0x
B=0xEFCDAB
C=0xBADCFE
D=0x
E=0xC3D2E1F0
SHA1的4轮运算
SHA1有4轮运算,每一轮包括个步骤,一共步,当第1轮运算中的第1步骤开始处理时,A、B、C、D、E五个链接变量中的值先赋值到另外5个记录单元A′,B′,C′,D′,E′中。这5个值将保留,用于在第4轮的最后一个步骤完成之后与链接变量A,B,C,D,E进行求和操作。
SHA1的4轮运算,共个步骤使用同一个操作程序,如下:
A,B,C,D,E←[(A«<5)+ ft(B,C,D)+E+Wt+Kt],A,(B«<),C,D
其中 ft(B,C,D)为逻辑函数,Wt为子明文分组W[t],Kt为固定常数。这个操作程序的意义为:
● 将[(A«<5)+ ft(B,C,D)+E+Wt+Kt]的结果赋值给链接变量A;
● 将链接变量A初始值赋值给链接变量B;
● 将链接变量B初始值循环左移位赋值给链接变量C;
● 将链接变量C初始值赋值给链接变量D;
● 将链接变量D初始值赋值给链接变量E。
代码实现: SHA-1算法C代码实现
SHA-
SHA- 算法输入报文的最大长度不超过2^ bit,输入按-bit 分组进行处理,产生的输出是一个-bit 的报文摘要。
代码实现: SHA-算法C代码实现
参考
简书: Hash算法总结
维基百科: 哈希函数散列函数
维基百科: MD5算法
百度百科: MD5
CNBlogs: SHA1算法原理
CSDN: SHA-算法实现
哈希算法的原理
1、哈希算法又叫散列算法,是将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。它的原理其实很简单,就是把一段交易信息转换成一个固定长度的字符串。MD5和SHA-1可以说是应用最广泛的Hash算法,而它们都是以MD4为基础设计的。
2、这串字符串具有一些特点:
(1)信息相同,字符串也相同。
(2)信息相似不会影响字符串相同。
(3)可以生成无数的信息,但是字符串的种类是一定的,所以是不可逆的。
常见的哈希算法有哪些?
1、RSHash
unsigned int RSHash(const std::string& str)
{
unsigned int b = ;
unsigned int a = ;
unsigned int hash = 0;
for(std::size_t i = 0; i < str.length(); i++)
{
hash = hash * a + str[i];
a = a * b;
}
return hash;
}
2、JSHash
unsigned int JSHash(const std::string& str)
{
unsigned int hash = ;
for(std::size_t i = 0; i < str.length(); i++)
{
hash ^= ((hash << 5) + str[i] + (hash >> 2));
}
return hash;
}
3、PJWHash
unsigned int PJWHash(const std::string& str)
{
unsigned int BitsInUnsignedInt = (unsigned int)(sizeof(unsigned int) * 8);
unsigned int ThreeQuarters = (unsigned int)((BitsInUnsignedInt * 3) / 4);
unsigned int OneEighth = (unsigned int)(BitsInUnsignedInt / 8);
unsigned int HighBits = (unsigned int)(0xFFFFFFFF) << (BitsInUnsignedInt - OneEighth);
unsigned int hash = 0;
unsigned int test = 0;
for(std::size_t i = 0; i < str.length(); i++)
{
hash = (hash << OneEighth) + str[i];
if((test = hash & HighBits) != 0)
{
hash = (( hash ^ (test >> ThreeQuarters)) & (~HighBits));
}
}
return hash;
}
4、ELFHash
unsigned int ELFHash(const std::string& str)
{
unsigned int hash = 0;
unsigned int x = 0;
for(std::size_t i = 0; i < str.length(); i++)
{
hash = (hash << 4) + str[i];
if((x = hash & 0xFL) != 0)
{
hash ^= (x >> );
}
hash &= ~x;
}
return hash;
}
5、BKDRHash
unsigned int BKDRHash(const std::string& str)
{
unsigned int seed = ; // etc..
unsigned int hash = 0;
for(std::size_t i = 0; i < str.length(); i++)
{
hash = (hash * seed) + str[i];
}
return hash;
}
哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。一般用于快速查找和加密算法。