1.MASA Framework源码解读-01 MASAFacotry工厂设计(一个接口多个实现的源码溢出最佳姿势)
2.Recast Navigation 源码剖析 01 - Meadow Map论文解析与实验
3.BusyboxBusybox源码分析-01 | 源码目录结构和程序入口
4.MapBox源码解读 01 - style 的加载逻辑
MASA Framework源码解读-01 MASAFacotry工厂设计(一个接口多个实现的最佳姿势)
闲来无事,偶然接触到了MASA Framework,源码溢出此框架是源码溢出MASA Stack系列中专门用于构建web系统的开源框架。通过在几个小型项目中的源码溢出应用,我发现它确实拥有诸多优点。源码溢出为深入理解其内部结构和设计思路,源码溢出源码 外挂我决定详细阅读MASA Framework的源码溢出源代码,并记录整个阅读过程。源码溢出如有任何错误或疑问,源码溢出还请各位指正。源码溢出
MASA Framework是源码溢出一个功能全面且易于扩展的框架,主要由三个部分组成:BuildingBlocks(抽象层)、源码溢出Contrib(BuildingBlocks的源码溢出实现)以及Utils(工具库)。官方将BuildingBlocks称为构建块,源码溢出实际上,源码溢出这个层将日常开发中频繁使用到的功能抽象出来,如多租户、多语言、仓储、qq轰炸源码配置中心等,形成易于替换的接口,大大提高了框架的灵活性和可扩展性。
MASA Framework包含个主要模块,几乎涵盖了日常开发所需的所有组件,从基础服务到高级功能应有尽有。这些模块协同工作,共同构建了一个强大且功能丰富的框架。
让我们从MASA Framework的核心设计——构建工厂(MasaFactory)开始探讨。构建工厂在框架中起着至关重要的作用,它负责通过配置选项来创建不同实现的实例。在实际项目中,构建工厂设计用于解决接口具有多种实现时的依赖注入问题,比如在面对多实现的场景时,如何优雅地注入并使用特定的实现类。以下是构建工厂解决多实现问题的具体步骤:
首先,通过下载MASA Framework的源码(地址:github.com/masastack/MA...)进行研究。我们首先关注的自动替换源码是Masa.BuildingBlocks.Data.Contracts类库的设计。MASA Framework的构建工厂通过选项配置,允许为接口的每个实现类指定一个简短的名称。根据传入的不同名称,构建工厂类的Create方法能够创建对应的实例。
通过使用MASA Framework的构建工厂,我们能够轻松地创建与特定名称对应的面单消息转换类,而无需依赖于IEnumerable集合进行复杂的筛选。这种方法在实现多实现场景时明显更加直观且高效。
以物流面单申请为例,不同销售订单对应不同的商家店铺,而每个商家店铺可能选择不同的物流商。利用MASA Framework构建工厂实现不同物流商的面单申请,不仅简化了开发过程,而且在使用层面保持了无感的效果。
总结而言,MASA Framework提供了强大的构建工厂设计,以解决多实现接口的依赖注入问题,简化了开发流程。modbus软件源码这个设计不仅限于构建工厂模块,其他模块同样采用了类似的设计理念,允许用户根据需要替换官方实现或结合自定义实现,以适应不同场景和需求。
MASA Framework的其他模块同样采用了构建工厂的设计,用户既可以替换官方实现,也可以在程序内同时共存官方实现和自定义实现。例如,Service Caller模块不仅支持使用dapr的服务调用,还提供了HTTP服务调用等选项。
Recast Navigation 源码剖析 - Meadow Map论文解析与实验
本文深入解析了Meadow Map论文及其在Recast Navigation中的应用。Recast Navigation是一款常见的游戏开发寻路库,源于芬兰开发者Mikko Mononen的初始工作。Meadow Map方法,由Ronald C. Arkin于年提出,为现代Navmesh系统奠定了基础,特别强调长时间存储地图的有效策略。
Meadow Map通过凸多边形化动机,vb 源码 exif提出了一种优化存储和访问3D地图数据的方法。相较于传统的基于网格的寻路方法,Meadow Map采用凸多边形化来减少节点数量,从而提高性能效率,特别是针对平坦区域。凸多边形化的核心在于利用凸多边形内部任意两点直接相连的特性,构建寻路图。
Recast Navigation系统使用凸多边形化来处理3D场景,通过算法自动将3D场景转换为2.5D形式,以便于寻路。与Meadow Map类似,Recast也采用了基于凸多边形边缘中点作为寻路节点的策略,构建寻路图以供A*算法使用。这种方法简化了搜索空间,提高了寻路效率。
在实现Meadow Map时,需解决多边形分解成多个凸多边形的问题。此过程通过不断消除多边形中的非凸角,递归生成凸多边形,实现多边形化。同时,处理多边形内部的障碍物(holes)时,需找到与可见顶点相连的内部对角线,将空洞并入多边形内部。
路径改进方面,Recast Navigation采用String Pulling方法,旨在优化路径,避免路径的抖动和非最优行为。这一策略在实际应用中提升了路径质量,使得寻路过程更为流畅。
总之,Meadow Map和Recast Navigation在采用凸多边形化来构建寻路图的基础上,通过不同实现细节和优化策略,有效提高了游戏中的路径寻路效率和性能。通过深入理解这两种方法,游戏开发者可以更好地选择和应用合适的寻路库,以满足不同游戏场景的需求。
BusyboxBusybox源码分析- | 源码目录结构和程序入口
Busybox是一个开源项目,遵循GPL v2协议。其本质是将多个UNIX命令集合成一个小型可执行程序,适用于构建轻量级根文件系统,特别是嵌入式系统设计中。版本1..0的Busybox体积小巧,仅为几百千字节至1M左右,动态链接方式下大小更小。其设计模块化,可灵活添加、去除命令或调整选项。
Busybox程序主体在Linux内核启动后加载运行,入口为main()函数,位于libbb/appletlib文件末尾。通过条件分支处理,决定以库方式构建。在函数体中,使用mallopt()调整内存分配参数以优化资源使用。接着通过条件宏定义,控制代码编译逻辑,如在Linux内核启动后期加载并运行Busybox构建的init程序。命令行输入时,Busybox会解析参数,执行对应操作。
在源码中,通过char * applet_name表示工具名称,调用lbb_prepare()函数设置其值为“busybox”。之后解析命令行参数,如在mkdir iriczhao命令中,解析到mkdir命令传递给applet_name。配置了FEATURE_SUID_CONFIG宏定义时,会从/etc/busybox.conf文件中解析配置参数。最后,执行run_applet_and_exit()函数,根据NUM_APPLETS值决定执行命令或报错。
在命令行下键入命令后,执行关键操作的函数是find_applet_by_name()和run_applet_no_and_exit()。编译构建并安装Busybox后,可执行程序和命令链接分布在安装目录下。从源码角度,命令有一一对应的执行函数,通过命令表管理命令入口函数。在代码执行逻辑中,首先调用find_applet_by_name()获取命令表数组下标,再传递给run_applet_no_and_exit()执行对应命令。
MapBox源码解读 - style 的加载逻辑
本文主要聚焦于MapBox实例化过程中style的加载和渲染流程。这个过程涉及多个步骤:首先,从数据源发起请求获取style数据,然后通过解析将数据转化为可操作的结构。数据进一步根据属性进行赋值,接着进行着色器的计算,最终在屏幕上呈现图层。为了更直观地理解,这里有一个定制化线侧渲染的demo示例。
style的加载和渲染过程可以分解为:数据获取-解析-属性赋值-着色器执行。如果你对这个过程还感到困惑,可参考相关附件获取详细信息。
通过上述步骤,创建mapbox对象时,源代码中添加source和layer的代码其实遵循这样的逻辑:数据驱动图层展现。现在,让我们通过一个简单的线单侧绘制的案例,实际演示这个过程。
今天的讲解就到这里,额外提一个小贴士:在WebGL的web端调试中,Spector.js是一个非常实用的工具,适用于Firefox和Chrome,你可以自行下载并进行探索使用。