1.QEMU虚拟机管理器:一种高效硬件模拟器
2.掌握QEMU虚拟化技术:搭建ARM64+Linux调试环境实战指南
3.手把手教你搭建ARM64 QEMU环境
4.QEMU 安装与使用
5.Arm Linux 调试-QEMU调试环境 搭建
6.在window上使用qemu虚拟机启动树莓派镜像
QEMU虚拟机管理器:一种高效硬件模拟器
QEMU(Quick EMUlator)是源码一种开源的虚拟机监视器和模拟器,支持多种硬件平台模拟,安装如x、源码ARM、安装PowerPC等,源码被广泛应用于虚拟化、安装cgp指标源码嵌入式系统开发和仿真等领域。源码
作为虚拟机监视器,安装QEMU能在物理主机上同时运行多个虚拟机,源码并提供管理控制能力。安装它支持多种操作系统,源码包括Linux、安装Windows等。源码作为模拟器,安装QEMU可以在一个主机上执行不同架构的源码二进制代码,实现跨平台软件开发与测试,便于开发人员在不同体系结构下调试程序。
QEMU具备丰富的功能和扩展性,如硬件加速、网络配置、磁盘镜像和快照等,被广泛应用于云计算、容器技术、嵌入式系统仿真和移动设备开发等领域。
QEMU是一款开源的模拟器及虚拟机监管器(VMM)。它主要提供两种功能:一是作为用户态模拟器,执行不同于主机架构的代码;二是作为虚拟机监管器,模拟全系统,利用其他VMM(如Xen、KVM等)实现硬件虚拟化支持,创建接近主机性能的虚拟机。
用户可通过Linux发行版的软件包管理器安装QEMU,例如在Debian系列发行版上,可使用以下命令安装:
除此之外,用户也可以选择从源码安装。
获取QEMU源码,可以从QEMU下载官网上下载QEMU源码的tar包。以命令行下载2.0版本的QEMU为例:
获取源码后,可根据需求配置和编译QEMU。configure脚本用于生成Makefile,其选项可用./configure --help查看。
安装完成后,会生成以下应用程序:
QEMU作为系统模拟器时,会模拟出一台能够独立运行操作系统的虚拟机。每个虚拟机对应主机中的一个QEMU进程,虚拟机的vCPU对应QEMU进程的一个线程。
系统虚拟化主要虚拟出CPU、内存及I/O设备。虚拟出的CPU称为vCPU,QEMU为了提高效率,借用KVM、XEN等虚拟化技术,直接利用硬件对虚拟化的药物正品溯源码支持,在主机上安全地运行虚拟机代码(需要硬件支持)。
虚拟机内存会被映射到QEMU的进程地址空间,在启动时分配。在虚拟机看来,QEMU所分配的主机上的虚拟地址空间为虚拟机的物理地址空间。
QEMU在主机用户态模拟虚拟机的硬件设备,vCPU对硬件的操作结果会在用户态进行模拟,如虚拟机需要将数据写入硬盘,实际结果是将数据写入主机中的一个镜像文件中。
使用qemu-img创建虚拟机镜像,虚拟机镜像用于模拟虚拟机的硬盘,在启动虚拟机之前需要创建镜像文件。
使用qemu-system-x启动x架构的虚拟机。由于test-vm-1.qcow2中并未给虚拟机安装操作系统,所以会提示“无可启动设备”。
启动VM安装操作系统镜像。指定虚拟机内存大小、使用KVM加速、添加fedora的安装镜像。安装完成后,重启虚拟机即可从硬盘启动。之后再次启动虚拟机,只需执行以下命令:
qemu-img支持多种文件格式,可通过qemu-img -h查看。其中raw和qcow2是比较常用的两种格式,raw是qemu-img命令默认的格式,qcow2是qemu目前推荐的格式,功能最多。
Qemu软件虚拟化实现的思路是采用二进制指令翻译技术,提取guest代码,然后将其翻译成TCG中间代码,最后再将中间代码翻译成host指定架构的代码。
从宏观上看,源码结构主要包含以下几个部分:
(1)开始执行:/vl.c中的main函数定义,它也是执行的起点,主要建立一个虚拟的硬件环境,通过参数解析初始化内存、设备、CPU参数等。
(2)硬件模拟:所有硬件设备都在/hw/目录下面,每个设备都有独自的文件,包括总线、串口、网卡、鼠标等。它们通过设备模块串在一起,在vl.c中的machine_init中初始化。
(3)目标机器:QEMU模拟的CPU架构有Alpha、ARM、Cris、i、MK、网络墓地网站源码PPC、Sparc、Mips、MicroBlaze、SX和SH4。在QEMU中使用./configure可以配置运行的架构。
(4)主机:使用TCG代码生成主机的代码,这部分代码在/tcg/目录中,对应不同的架构,分别在不同的子目录中。
(5)文件总结:TCG动态翻译、TB链、TCG代码分析、IOCTL使用流程、内存管理等相关内容。
掌握QEMU虚拟化技术:搭建ARM+Linux调试环境实战指南
本文详细介绍了如何在Ubuntu .系统上搭建ARM架构的Linux调试环境,利用QEMU虚拟化技术。首先,确保主机系统安装了最新的Ubuntu .版本,QEMU模拟ARM处理器,并选择最新Linux内核。 安装步骤如下:安装编译工具链:检查并安装必要的版本,通过官方仓库或源码编译。
QEMU安装:通过仓库安装QEMU 2.1ubuntu,检查安装版本,源码安装时需要注意可能遇到的编译错误。
根文件系统构建:从Busybox官网下载源码,配置为编译特定工具并开启静态库选项,处理可能的ncurses库依赖问题。
根文件系统结构补充:在根目录添加必要的目录如etc、dev和lib,配置文件以指定挂载文件系统。
编译内核:从官方下载源码,指定编译工具,配置内核选项,如添加hotplug和initramfs支持,确保内核页配置正确。
模拟磁盘与文件共享:使用模拟磁盘挂载根文件系统,以保持数据持久性。通过qemu与主机文件共享,测试动态链接应用程序。
内核模块测试与调试:创建Makefile和驱动测试文件,进行交叉编译和在qemu上加载驱动,使用GDB进行内核模块调试。
Eclipse可视化调试:安装arm-none-eabi-gdb和Java环境,配置Eclipse-CDT以支持ARM架构,利用Eclipse进行内核单步调试。
通过以上步骤,你将成功搭建一个适合ARM+Linux调试的环境,进行内核开发和调试工作。
手把手教你搭建ARM QEMU环境
在上篇介绍了ARM QEMU环境搭建过程后,让我们继续学习如何搭建ARM QEMU开发环境。魔兽az源码地址 首先,准备开发环境:你的PC系统:Windows
虚拟机软件:VMware
虚拟机操作系统:Ubuntu .
目标模拟的位CPU:Cortex-A
使用版本:qemu-8.2.0、Linux Kernel 5..和busybox-1..1
构建步骤如下:从qemu官网下载并解压qemu-8.2.0源码。
确保你的主机Python版本大于3.8,如需升级,访问python官网下载源码。
安装所需的Python依赖和glib2.0环境。
进入qemu目录,配置源码,创建编译目录并进行配置。
从kernel.org获取Linux kernel 5.源码,解压并编译生成Image文件。
同时,编译kernel modules,存放在指定目录。
使用busybox制作根文件系统:下载最新版本源码,设置交叉编译工具链,重新配置并安装。
创建rootfs目录,将busybox安装内容复制到其中,包括设置环境变量和设备节点。
在/etc/init.d/rcS脚本中,rcS会挂载文件系统、处理热插拔和设置eth0的静态IP。
理解并配置其他配置文件如/etc/fstab和/etc/profile。
如果需要,可以尝试基于ram的内存文件系统,使用cpio工具制作initramfs或gzip压缩。
如果需要持久化,制作基于硬盘的文件系统。
最后,使用qemu命令启动内核并通过串口登录。
对于更详细的步骤和示例,可以参考我的文章《Linux随笔录》,回复关键字"busybox"获取相关资源。作者潘小帅,热衷于Linux底层技术,喜欢分享原创文章,也欢迎关注微信公众号Linux随笔录,一同探讨技术与生活。感谢您的支持和关注!QEMU 安装与使用
在安装QEMU之前,您需要准备硬件支持。若要构建KVM环境,处理器(CPU)必须硬件支持VT技术,并且在BIOS中激活这一功能。大多数流行的服务器和部分桌面处理器的BIOS默认已开启VT。您可以在“Advanced→Processor Configuration”下查看和设置VT选项,通常标识为“Intel®Virtualization Technology”或“Intel VT”。
设置并保存BIOS设置后,系统重启生效。在Linux系统中,java io源码详解您可以通过检查/proc/cpuinfo文件中的CPU特性标志(flags)来确认CPU是否支持硬件虚拟化。Intel系列CPU支持虚拟化的标志为“vmx”,而AMD系列CPU的标志为“svm”。您可以使用以下命令查看这些标志:
KVM是Linux内核中的一个module,自Linux 2.6.版本起正式加入内核。要下载最新KVM源代码,您有三种方式:下载kvm.git项目代码仓库、下载linux.git内核代码仓库,或者下载Linux内核的源代码(Tarball格式)。
首先,检查系统是否已加载kvm模块。如果没有安装,需要通过搜索引擎了解安装过程。接下来,您可以选择源码安装或使用工具安装QEMU。源码安装需参考官方步骤,而工具安装则包括qemu-kvm、qemu-img和libvirt等。
安装完成后,在/usr/bin目录下会有以qemu开头的可执行程序。例如,qemu-x_是运行特定架构程序的命令,而qemu-system-x_是运行特定架构系统的(虚拟机)。若要使用kvm支持,需要加上参数 -enable-kvm。更多关于这些程序的信息,请参考相关文献。
在QEMU使用方面,您需要创建虚拟机并配置相关选项。显示选项用于定义虚拟机启动后的显示接口类型和属性,网络属性相关选项则用于定义网络设备接口类型及其属性。此外,您还可以手动创建bridge,为i平台设置专用选项,并查看创建qcow2格式磁盘支持的选项。
Arm Linux 调试-QEMU调试环境 搭建
ARM Linux调试,尤其是针对QEMU虚拟机环境的搭建,是开发者进行嵌入式系统开发的重要环节。QEMU,全称Quick Emulator,是一个开源的模拟器,支持多种架构,包括ARMv8。安装QEMU可通过两种方式:直接通过包管理器如apt-get安装全架构的qemu-system或针对x架构的qemu-system-x,或者选择源码编译以获取更全面的支持。
QEMU的启动参数设计灵活,支持ATF启动、UEFI启动、u-boot启动和Linux kernel启动。对于使用Linux kernel协议的guest,如非ELF文件,DTB(Device Tree Blob)的地址会被传递到相应寄存器。而对于bare-metal类型的引导,DTB位于RAM的起始地址。Flash memory和RAM的配置对于引导过程至关重要,例如,Flash1用于装载ATF FIP格式的Image,包含BL2、BL、BL(可能包含Image而非U-Boot),而Flash0用于装载BL(可能为QEMU_EFI.fd,可替代U-Boot)。
在QEMU的virt平台上,启动过程涉及BootRom加载BL2,BL2加载BL3,随后BL执行引导。QEMU支持两种引导方式,针对不同的引导方式,客户代码定位DTB的方式有所差异。具体启动实例中,QEMU会根据硬件配置自动将DTB加载到特定的物理地址,可以通过GDB调试工具在启动时查看寄存器信息,确认DTB加载位置。
若需要深入了解和分析DTB,QEMU提供了dump功能,将virt machine的DTB导出并转换为DTS格式。对于ARMv8的支持、virt machine的详细信息以及QEMU调试ARM内核的方法,相关参考资料可供查阅。
在window上使用qemu虚拟机启动树莓派镜像
在Windows上通过QEMU启动树莓派镜像的详细步骤如下:
首先,从QEMU官网下载最新版本的QEMU模拟器,我使用的版本是7.2.0,下载名为qemu-w-setup-.exe的安装包。安装过程很简单,按照向导进行默认配置即可。
在Linux环境下,可以使用命令行下载源码编译安装,但这里我们主要介绍Windows的安装方法。接下来,访问树莓派软件下载中心,选择合适的镜像文件,如我下载的---raspios-bullseye-armhf-lite.img.xz,注意区分全功能版和精简版。
同时,为了虚拟机启动,需要从GitHub获取kernel-qemu-4..-buster和versatile-pb-buster.dtb文件。将这些文件与镜像文件放在同一目录,并编写一个bat脚本来快速启动QEMU,脚本中包含hostfwd参数,以便通过ssh远程连接到虚拟机。
启动后,可以看到树莓派的界面。对于软件开发,由于树莓派性能较差,通常选择在主机上进行交叉编译。在Ubuntu上安装交叉编译工具,如通过`apt-get`安装arm-linux-gnueabihf-gcc。然而,编译的程序可能因为架构不匹配导致运行错误,如`Illegal instruction`。这可能是由于编译器针对armv7,而设备是armv6架构。
为了解决这个问题,我尝试了arm-armjzfssf-linux-gnueabi编译器,但遇到浮点数计算错误。最终,我找到了raspberry官方提供的工具gcc-linaro-arm-linux-gnueabihf-raspbian,它支持armv6硬浮点,编译的程序在树莓派虚拟设备上运行正常。
至于镜像的构建,---raspios-bullseye-armhf-lite.info文件显示,树莓派镜像使用了arm-linux-gnueabihf-gcc-8版本8.4.0编译,其Uname字符串提供了具体信息,包括Linux内核版本和构建日期。
总结起来,为在Windows上成功启动树莓派镜像,需下载适当的QEMU、镜像文件、内核文件,并根据设备架构选择合适的交叉编译工具,确保编译后的程序兼容目标设备。
QEMU虚拟机、源码 虚拟化与云原生
QEMU,全称为Quick Emulator,是Linux下的一款高性能的虚拟机软件,广泛应用于测试、开发、教学等场景。QEMU具备以下特点:
QEMU与KVM的关系紧密,二者分工协作,KVM主要负责处理虚拟机的CPU、内存、IO等核心资源的管理,而QEMU则主要负责模拟外设、提供虚拟化环境。KVM仅模拟性能要求较高的虚拟设备,如虚拟中断控制器和虚拟时钟,以减少处理器模式转换的开销。
QEMU的代码结构采用线程事件驱动模型,每个vCPU都是一个线程,处理客户机代码和模拟虚拟中断控制器、虚拟时钟。Main loop主线程作为事件驱动的中心,通过轮询文件描述符,调用回调函数,处理Monitor命令、定时器超时,实现VNC、IO等功能。
QEMU提供命令行管理虚拟机,如输入"savevm"命令可保存虚拟机状态。QEMU中每条管理命令的实现函数以"hmp_xxx"命名,便于快速定位。
QEMU的编译过程简便,先运行configure命令配置特性,选择如"–enable-debug"、"–enable-kvm"等选项,然后执行make进行编译。确保宿主机上安装了如pkg-config、zlib1g-dev等依赖库。安装完成后,可使用make install命令将QEMU安装至系统。
阅读QEMU源码时,可使用Source Insight 4.0等工具辅助。下载安装说明及工具文件,具体安装方法参考说明文档。QEMU源码可在官网下载,qemu.org/download/。
QEMU与KVM的集成提供了强大的虚拟化能力,广泛应用于虚拟机管理、测试、开发等场景。本文介绍了QEMU的核心特性和使用方法,帮助初次接触虚拟化技术的用户建立基础认知。深入了解QEMU与KVM之间的协作,以及virtio、virtio-net、vhost-net等技术,将为深入虚拟化领域打下坚实基础。
qemu搭建arm linux kernel环境
搭建ARM Linux内核环境,包含详细步骤如下:
一、环境准备:
使用Ubuntu .系统,并下载最新版Linux内核源码(Linux Kernel Archives)。
安装交叉编译工具链,通过命令行使用`sudo apt-get install gcc--aarch-linux-gnu`或自行下载(开发者网站:developer.arm.com/downloads)。
安装QEMU版本(最新版为`sudo apt-get install qemu-system-arm`)。
二、编译内核:
解压内核源码后,设置`config`文件,使用命令`make ARCH=arm CROSS_COMPILE=aarch-none-linux-gnu- defconfig`进行编译配置。确保`CROSS_COMPILE`前缀与自定义编译工具链名称一致。
执行`make ARCH=arm CROSS_COMPILE=aarch-none-linux-gnu- Image -j8`编译内核,生成kernel image`Image`和用于gdb调试的`vmlinux`文件。
可选步骤:编译内核模块(ko),使用命令`make ARCH=arm CROSS_COMPILE=aarch-none-linux-gnu- modules -j8`。
三、制作根文件系统:
选择便捷的busybox作为根文件系统,下载最新版本(busybox-1..1.tar.bz2)。进行编译配置并安装,根文件系统位于`busybox-1..1.tar.bz2/install/`。
构建ext4 image,合并busybox到img中,为后续实验提供方便。
四、使用QEMU启动内核:
创建启动脚本,包含内核`Image`和根文件系统`rootfs.img`的加载,确保脚本具有执行权限。启动脚本用于QEMU环境,简化实验过程。
完成步骤后,系统搭建完成。此过程记录于操作手册中,方便后续查看与避免重复错误。
手把手搭建qemu+buildroot开发环境
本文将指导您从零开始构建QEMU+Buildroot的ARM开发环境,以简化移植工作并自动构建定制化的嵌入式根文件系统。无需繁琐的移植,只需通过menuconfig配置所需的特性,Buildroot将自动处理源码下载、编译和打包,省去了大量手动操作。环境准备
在Windows 上,借助VMware ,选择Ubuntu .作为虚拟机系统,设定为位的Cortex-a处理器。依赖安装
为了搭建环境,首先需要安装QEMU 8.2.0和Linux Kernel 5..,以及AARCH的工具链。从QEMU官网获取8.2.0源码,确保Python版本大于3.8和glib2.0环境。配置与编译
在已安装依赖的前提下,进入QEMU源码目录,配置并编译。配置过程中,针对ARM架构进行定制。接着,下载并解压Buildroot ..1,配置kernel,关注关键选项。 执行buildroot编译,生成Image、roots.ext4和start-qemu.sh文件。在start-qemu.sh中,需修改第行,登录console时使用root账户。启动与操作
启动QEMU,登录后,可通过组合键退出当前会话(CTRL + a, x)。作者潘小帅,Linux技术爱好者,欢迎关注他的微信公众号“Linux随笔录”,持续获取更多技术分享。QEMU搭建arm环境1-直接启动kernel
QEMU搭建ARM环境:从启动kernel到SD卡镜像
要通过QEMU模拟ARM系统,首先需要选择合适的模拟器,如qemu-system-arm针对位Arm cpu(如Arm9, Arm、Cortex-A7/A9/A),而qemu-system-aarch则针对位Arm cpu(如Cortex A, A)。使用`qemu-system-arm -machine help`可以查看支持的开发板。 搭建过程中,先要安装交叉编译工具链,从Linaro官网下载并配置环境变量。接着,从Linux官网获取6.6.8版本的kernel源码,注意处理可能的编译依赖库安装问题。编译成功后,将生成kernel文件。 对于BusyBox,无需修改配置,编译完成后会在当前目录生成_install文件夹,这部分将在根文件系统构建中发挥作用。手动构建rootfs时,需要在rootfs下创建必要目录,如lib、proc、sys等,并将BusyBox的_install目录文件复制,以及工具链sysroot目录的lib文件(如Linaro的sysroot-glibc-linaro)。记得减小库文件大小以便于镜像。 创建rcS脚本,挂载proc和sysfs,执行设备节点扫描。随后,使用`sudo ./rootfs.sh`打包镜像。在启动QEMU虚拟机时,可以选择使用Ubuntu作为根文件系统,通过挂载SD卡的根文件系统,如`sudo create_qemu_ubuntu.sh`生成QEMU SD卡镜像。 为了获得更完善的Ubuntu rootfs,可以考虑使用chroot配合qemu,或者通过debootstrap定制。同时,处理apt update时可能出现的证书错误,将https源改为http。在启动QEMU时,注意可能的dev-ttyAMA0.device/start报错,并根据指南调整相关脚本,如`sudo create_qemu_ubuntu.sh`。