【android oracle 源码】【dumpsys源码】【dbunit 源码】hive sql 源码

2025-01-01 19:18:26 来源:修仙西游源码 分类:知识

1.Hive-SQL快速实现特征属性数据的分箱分层
2.HiveSQL分位数函数percentile()使用详解+实例代码
3.在shell中使用hiveSQL的注意事项
4.分享一个 HIVE SQL 性能优化点-使用公共表表达式 CTE 替换临时表
5.spark sql源码系列 | with as 语句真的会把查询的数据存内存嘛?
6.详解HiveSQL执行计划

hive sql 源码

Hive-SQL快速实现特征属性数据的分箱分层

       等距分箱/等宽分箱数学运算主要运用了向上取整ceil() 和 向下取整floor() 的方法。

       等频分箱则采用了Ntile(n) over(order by col)分块函数进行实现。

       对于NULL值的处理,需要考虑是否需要单独为1组。

       percent_rank() over(order by col)函数用于先得出每个值对应的百分位数,然后根据实际需求进行分箱,android oracle 源码该函数属于PERCENT_RANK开窗函数。

       计算百分比排名的公式为:(x - 1) / (the number of rows in the window or partition - 1),其中,x为当前行的排名。

       以下数据集说明了此公式的使用,返回值范围介于0和1(含1)之间。任何集合中的第一行的PERCENT_RANK均为0。

       手工分箱通过percentile函数实现,格式为percentile(col, p),其中p的取值范围是(0,1)。需要注意的是,percentile要求输入的字段必须是int类型的。

       percentile_approx函数与percentile函数类似,格式为percentile_approx(col, p),其中p的dumpsys源码取值范围也是(0,1)。percentile_approx函数的另一个参数B可以控制内存消耗的近似精度,B值越大,结果的准确度越高。默认为,。当col字段中的distinct值的个数小于B时,结果为准确的百分位数。

       例如,percentile_approx(col, array(0.,0.5,0.), )。

       参考链接:

HiveSQL分位数函数percentile()使用详解+实例代码

       HiveSQL分位数函数percentile()详解及实例代码

       在数据分析师的工具箱中,掌握各种SQL函数尤为重要,尤其是统计函数。直接在SQL中处理统计问题,如计算分位数,既高效又直观。本文主要聚焦于HiveSQL的percentile()和percentile_approx()函数,后续还将陆续介绍其他统计函数。如果你对这类内容感兴趣,别忘了持续关注。

       在HiveSQL中,分位数的dbunit 源码计算主要依赖于percentile()和percentile_approx()这两个工具。percentile()函数如下:

       语法:percentile(col, p),其中col为需要计算的int类型列,p为分位数,范围从0到1,如0.5表示中位数,0.为三分之二分位数。

       示例:通过列的方式输入p,会返回对应百分位数的列值。

       而percentile_approx()函数提供近似计算,语法如下:

       计算第p的近似百分位数,p范围为0到1,返回double类型。col字段支持浮点类型。参数B调整内存消耗和精度,默认值为。当col字段的唯一值少于B时,结果会精确。

       同样支持返回列值的百分位数。

       通过这些函数,无需将数据导出至Python的travian 源码Pandas进行处理,大大提升数据处理效率。如果你在使用中遇到任何问题,欢迎在下方评论区指正。

在shell中使用hiveSQL的注意事项

       hive是数据分析领域常用的工具之一,常在Linux shell环境中使用。运行hiveSQL的方式主要有三种:交互式命令行、使用-hive-e方式和使用-hive-f方式。在交互式命令行下,直接在shell中使用hive命令,输入"hive>"进入hive环境,输入hiveSQL进行查询,语句间用英文分号隔开,适合于快速查询或调试较短的SQL语句。使用-hive-e方式时,将SQL语句放入引号内执行,适用于较长的SQL语句,常用于任务调度。使用-hive-f方式时,将SQL语句写入文件,通过-hive-f执行文件,easybug源码与调度系统结合实现自动化脚本。在使用时,需要注意转义符的使用,以正确处理特殊字符如竖线和双竖线。在生成结果文件时,确保文件名与重定向符在同一行。执行时,注意星号在echo打印中的特殊处理。对于执行过程中的其他选项,如Silent模式运行hive以屏蔽mapreduce过程的日志,以及列名显示选项,能够帮助提高查询效率。此外,了解hive的其他选项能够避免许多常见问题,对提高工作效率大有裨益。

分享一个 HIVE SQL 性能优化点-使用公共表表达式 CTE 替换临时表

       在Hive SQL的性能优化策略中,一个值得探讨的点是运用公共表表达式CTE(Common Table Expression)来替代临时表。这种优化方法在提升作业效率和代码可读性上表现出色,特别是在处理大量I/O密集型任务时效果显著。

       CTE的优势在于它作为一个临时的计算单元,不将元数据持久化到HMS或HDFS,而是将查询结果暂存于内存或本地磁盘,避免了临时表产生的额外开销,从而实现了性能的提升。其基本语法为:

       WITH cte_name1 AS (select_statement1), cte_name2 AS (select_statement2)

       sql_containing_cte_name:

       在实践中,将CTE用于优化SQL语句的例子如下:

       原本可能的临时表创建与替换:create temporary table temp1 as select_statement; 可以替换为使用CTE:WITH temp1 AS (select_statement) select * from temp1;

       值得注意的是,CTE的优化特性在CDH和TDH版本的Hive,以及Spark SQL等环境中都得到了广泛支持,具有良好的跨平台和跨引擎适用性。

       然而,尽管CTE带来显著性能提升,但它并非在所有场景下都能完全取代临时表,具体情况需根据数据量、查询复杂度和系统资源等因素综合考虑。在实际操作中,应根据具体需求灵活运用。

spark sql源码系列 | with as 语句真的会把查询的数据存内存嘛?

       在探讨 Spark SQL 中 with...as 语句是否真的会把查询的数据存入内存之前,我们需要理清几个关键点。首先,网上诸多博客常常提及 with...as 语句会将数据存放于内存中,来提升性能。那么,实际情况究竟如何呢?

       让我们以 hive-sql 的视角来解答这一问题。在 hive 中,有一个名为 `hive.optimize.cte.materialize.threshold` 的参数。默认情况下,其值为 -1,代表关闭。当值大于 0 时(如设置为 2),with...as 语句生成的表将在被引用次数达到设定值后物化,从而确保 with...as 语句仅执行一次,进而提高效率。

       接下来,我们通过具体测试来验证上述结论。在不调整该参数的情况下,执行计划显示 test 表被读取了两次。此时,我们将参数调整为 `set hive.optimize.cte.materialize.threshold=1`,执行计划显示了 test 表被物化的情况,表明查询结果已被缓存。

       转而观察 Spark SQL 端,我们并未发现相关优化参数。Spark 对 with...as 的操作相对较少,在源码层面,通过获取元数据时所做的参数判断(如阈值与 cte 引用次数),我们可以发现 Spark 在这个逻辑上并未提供明确的优化机制,来专门针对 with...as 语句进行高效管理。

       综上所述,通过与 hive-sql 的对比以及深入源码分析,我们得出了 with...as 语句在 Spark SQL 中是否把数据存入内存的结论,答案并不是绝对的。关键在于是否通过参数调整来物化结果,以及 Spark 在自身框架层面并未提供特定优化策略来针对 with...as 语句进行内存管理。因此,正确使用 with...as 语句并结合具体业务场景,灵活调整优化参数策略,是实现性能提升的关键。

详解HiveSQL执行计划

       Hive SQL执行计划详解

       Hive SQL执行计划揭示了SQL语句转换成具体执行逻辑的整体框架,帮助开发者理解SQL在引擎层面上的执行路径,从而识别瓶颈点,实现优化。执行计划是SQL优化的关键,能够区分看似等价但实际不等价的SQL语句。

       查看执行计划的基本方法是在SQL语句前加入关键字`explain`。Hive提供的执行计划信息主要包括以下几点:

查看执行计划的命令使用

       使用语法:在Hive CLI中输入`explain`命令,例如在Hive 2.3.7版本中输入`explain`命令,可获取查询的执行计划。

Hive查询的执行流程

       一个Hive查询会被转换为一个包含多个stage的序列(有向无环图DAG)。每个stage可能涉及MapReduce、元数据存储或文件系统操作。

具体执行计划分析

       执行计划包含stage dependencies和stage plan两大部分。stage dependencies表示各个stage之间的依赖关系,stage plan则展示具体的执行计划,如Map Reduce操作,包含操作符。

执行计划的应用场景

       通过查看执行计划,可以解决以下问题:

       - 确定JOIN语句是否过滤null值

       - 确认GROUP BY语句是否进行排序

       - 比较不同SQL语句的执行效率

       - 定位数据倾斜的代码段

explain dependency用法

       `explain dependency`用于展示SQL查询所需的数据来源,输出为JSON格式,包含数据输入和输出信息。通过查看不同场景下的执行计划,可以了解数据读取范围、数据过滤效果等。

explain authorization用法

       `explain authorization`提供当前SQL查询的数据来源、输出路径、执行用户和操作类型。此外,该命令还能揭示权限问题,即查询时的授权失败信息。

       总之,通过理解和分析Hive SQL执行计划,开发者可以优化查询性能,解决查询效率问题,以及定位和解决数据倾斜等问题。

更多资讯请点击:知识

推荐资讯

蘋果突襲推出M3「MacBook Air」!厚度僅1cm、舊代降價

蘋果搭載M3晶片的筆電「MacBook Air」無預警官網上架,將於當地時間8日正式開賣。新品主打運算速度比英特爾處理器提升13倍,厚度也更輕薄「僅1公分」,搶攻遊戲玩家以及筆重度使用者。隨著蘋果新筆

广东佛山9家企业被新认定为国家知识产权示范企业

中国消费者报广州讯陈晓莹记者李青山)11月11日,记者从广东省佛山市市场监管局获悉,国家知识产权局近日发布《国家知识产权局关于确定2022年新一批及通过复核的国家知识产权示范企业和优势企业的通知》,佛

市场监管总局依法对知网滥用市场支配地位行为作出行政处罚并责令其全面整改

2022年5月,市场监管总局依据《反垄断法》对知网涉嫌实施垄断行为立案调查。调查期间,市场监管总局成立专案组,依法扎实高效、稳妥有序推进案件查办,对知网进行现场检查,获取大量证据材料;对其他竞争性平台