1.从源码剖析SpringBoot中Tomcat的请求请求默认最大连接数
2.tomcat源码为啥不采用netty处理并发?
3.Tomcat处理http请求之源码分析 | 京东云技术团队
4.一文详解Tomcat Ghostcat-AJP协议文件读取/文件包含漏洞CVE-2020-1938
5.21张图解析Tomcat运行原理与架构全貌💥通宵爆肝
6.Tomcat源码分析— Bootstrap启动流程
从源码剖析SpringBoot中Tomcat的默认最大连接数
虽然前端的Chrome浏览器对WebSocket连接有限制,但实际情况下这个限制并不常见。源码源码SpringBoot中Tomcat的分析默认最大连接数和线程数配置对请求处理能力有很大影响。在SpringBoot 1.5.9.RELEASE版本中,请求请求未配置时,源码源码Tomcat默认的分析form源码下载最大连接数为,而最大线程数为。请求请求然而,源码源码随着版本更新,分析这些默认值在新版本(如2.2.3.BUILD-SNAPSHOT)中可能有所调整,请求请求具体配置需查看最新文档或源码。源码源码
在源码层面,分析可以通过ServerProperties类找到配置映射,请求请求然后在Tomcat类的源码源码customizeTomcat方法中,发现配置文件中的分析max-connections值会被赋值给endpoint的maxConnections属性,其默认值为。同样,maxThreads的默认值也在AbstractEndpoint类中设置,为。这些默认值在SpringBoot的最新版本中可能会有所变化,因此开发者在实际项目中需要根据需求进行调整。
tomcat源码为啥不采用netty处理并发?
Tomcat源码为何不采用netty处理并发?原因在于Tomcat要实现Servlet规范。在Servlet 3.0之前,其设计完全基于同步阻塞模型。无论Tomcat选择何种网络连接器,即使采用NIO,实现方式仍会模拟阻塞行为。这是因为Servlet规范本身规定的即是这样。
参照早期的一篇博客,我们可以了解Tomcat对keep-alive的实现逻辑。Netty无需遵循Servlet规范,能够最大程度发挥NIO的性能优势,实现更高的性能表现。然而,对于大多数业务场景而言,tomcat源码面试Tomcat的连接器已经足够满足需求。
简而言之,Tomcat源码不采用netty处理并发,主要是因为Servlet规范的限制。尽管Netty性能更优,但Tomcat的实现方式已经足够支持常见的业务需求。这也体现了在特定场景下,选择最符合需求的解决方案的重要性。
Tomcat处理/t/
零基础慎入,因为一不小心你就看懂了。
以tomcat 8.5.版本为例进行漏洞分析,首先下载tomcat源码: monLoader。完成初始化后,预加载tomcat和javax包下的自定义类,避免访问权限异常。
调用catalinaLoader加载器加载Catalina类,通过反射实例化对象,并设置sharedLoader实例作为入参,最后将实例化的Catalina对象赋予catalinaDaemon成员变量。
Tomcat组件的初始化主要在load方法中完成,通过反射调用Catalina的load方法,构建并初始化StandardServer及其子组件。Bootstrap.load方法通过反射调用Catalina的load方法,Catalina的load方法实现序列图中的逻辑,初始化配置文件解析器Digester,构建standardServer实例,绑定当前catalina实例,设置根路径,并调用init方法完成初始化。
Tomcat中的容器或组件使用模板方法设计模式,子类通过重写LifecycleBase抽象类的模板方法initInternal实现初始化逻辑。LifecycleBase的init方法主要完成两件事:调用父类的LifecycleBase#init方法,由standerServer#initInternal方法执行实际初始化。init方法逻辑包括:执行LifecycleBase#initInternal抽象方法,lodash 源码下载由standardServer#initInternal方法完成初始化。
service组件的init方法主要初始化Connector连接器,连接器的初始化尤为重要。不同协议处理器如AjpAprProtocol、HttpNioProtocol的初始化流程将在后续文章中单独讲解。
Bootstrap类的main方法通过反射执行catalina实例的start方法,启动standardServer实例,使其监听端口并接收新请求。start方法主要逻辑包括启动Service、Engine容器、Executor执行器、MapperListener监听器、Connector连接器等组件。当启动成功后,创建并监听端口,Tomcat对外提供服务。
总结,Tomcat的启动流程清晰且依赖模板方法与责任链设计模式,理解这两种模式有助于更好地理解启动过程及代码。启动过程首先初始化各组件,如Server、Service、Engine容器、虚拟主机Host、上下文Context、Executor执行器、Connector连接器等,然后按顺序启动组件,成功后监听端口提供服务。
Web中间件漏洞之Tomcat篇
Tomcat简介
Tomcat服务器是免费开放源代码的Web应用服务器,专为轻量级应用设计,在中小型系统和并发访问用户不多的场合广泛使用。对于新手,它可作为开发和调试JSP程序的reinhard算法源码首选服务器。运行在Windows主机上时,Tomcat作为Apache服务器的扩展独立运行,可响应HTML页面的访问请求。
远程代码执行漏洞及修复
通过构造攻击请求,利用Tomcat在Windows主机上运行且启用HTTP PUT请求方法,攻击者可以上传包含任意代码的JSP文件,从而实现任意代码执行。此漏洞影响的版本为Apache Tomcat 7.0.0至7.0.。复现步骤包括配置漏洞、开启PUT方法上传文件功能、插入相关配置文件、重启服务、通过burp抓包并修改请求方式为PUT,创建并上传包含命令执行代码的JSP文件,最后验证代码执行成功。
修复措施包括检测当前版本是否受影响并禁用PUT方法,或者更新至最新版。
后台弱口令war包部署漏洞及修复
Tomcat支持后台部署war文件,直接在web目录部署webshell。若后台管理页面存在弱口令,则攻击者可通过爆破获取密码,进而上传和执行webshell。修复方法包括在系统上以低权限运行Tomcat,创建专门的Tomcat服务用户并设置最小权限,增加本地和基于证书的身份验证,部署账户锁定机制,并针对特定目录设置最小权限访问限制,避免使用弱口令。
反序列化漏洞及修复
此漏洞与Oracle发布的mxRemoteLifecycleListener反序列化漏洞相关,由使用JmxRemoteLifecycleListener的监听功能引起。在Oracle发布修复后,Tomcat未能及时修复更新,导致远程代码执行。漏洞影响的spring 底层源码版本包括9.0.0.M1到9.0.0.M、8.5.0到8.5.6、8.0.0.RC1到8.0.、7.0.0到7.0.、6.0.0到6.0.。复现步骤需要外部开启JmxRemoteLifecycleListener监听的端口,修改配置文件和脚本,下载并部署相关jar包,验证远程代码执行。
修复措施包括关闭JmxRemoteLifecycleListener功能或对远程端口进行网络访问控制,增加严格的认证方式,并根据官方更新相应版本。
从源码角度分析Tomcat的acceptCount、maxConnections、maxThreads参数
在深入探讨Tomcat的acceptCount、maxConnections和maxThreads参数时,首先理解它们的关键在于理解请求在服务器端的处理流程。acceptCount决定了当所有处理线程忙时,Tomcat能暂存的连接请求队列的最大长度,相当于TCP连接时的全队列容量。maxThreads则是线程池中最大线程数,负责处理实际的HTTP请求。
在连接建立阶段(图1),当客户端尝试连接时,acceptCount在ServerSocket的backlog参数中起作用,它限制了TCP连接队列的大小。接着,初始化的线程池会通过prestartAllCoreThreads启动核心线程,为后续的SocketProcessor做准备。
在Acceptor获取Socket时,serverSocket.accept()的调用受到maxConnections的限制,防止过多的并发连接。一旦获取到Socket,就交由线程池执行SocketProcessor,进行实际的请求处理。
然而,如果处理请求的时间过长,如假设的次请求,需要无限长时间,我们需要考虑线程池的动态管理。如设置acceptCount为,maxThreads为,maxConnections为,minSpareThreads为。这意味着在高并发情况下,即使有个最大连接,acceptCount的个等待队列也足够缓冲,而maxThreads的个线程则负责处理,minSpareThreads则确保了至少有个空闲线程应对突发请求。
总结,acceptCount、maxConnections和maxThreads这三个参数共同影响了Tomcat的并发处理能力和连接队列管理,理解它们在实际应用中的配置和作用至关重要。
Servlet源码和Tomcat源码解析
画的不好,请将就。
我一般用的IDEA,很久没用Eclipse了,所以刚开始怎么继承不了HttpServlet类,然后看了一眼我创建的是Maven项目,然后去Maven仓库粘贴了Servlet的坐标进来。
maven坐标获取,直接百度maven仓库,选择第二个。
然后搜索Servlet选择第二个。
创建一个类,不是接口,继承下HttpServlet。
Servlet接口包括:init()、service()、destroy()和getServletInfo()。其中init()方法负责初始化Servlet对象,容器创建好Servlet对象后会调用此方法进行初始化;service()方法处理客户请求并返回响应,容器接收到客户端要求访问特定的Servlet请求时会调用此方法;destroy()方法负责释放Servlet对象占用的资源;getServletInfo()方法返回一个字符串,包含Servlet的创建者、版本和版权等信息。
ServletConfig接口包含:getServletName()、getServletContext()、getInitParameter(String var1)和getInitParameterNames()。其中getServletName()用于获取Servlet名称,getServletContext()获取Servlet上下文对象,getInitParameter(String var1)获取配置参数,getInitParameterNames()返回所有配置参数的名字集合。
GenericServlet抽象类实现了Servlet接口的同时,也实现了ServletConfig接口和Serializable接口。它提供了一个无参构造方法和一个实现init()方法的构造方法。GenericServlet中的init()方法保存了传递的ServletConfig对象引用,并调用了自身的无参init()方法。它还实现了service()方法,这是Servlet接口中的唯一没有实现的抽象方法,由子类具体实现。
HttpServlet是Servlet的默认实现,它是与具体协议无关的。它继承了GenericServlet,并实现了Servlet接口和ServletConfig接口。HttpServlet提供了一个无参的init()方法、一个无参的destroy()方法、一个实现了getServletConfig()方法的方法、一个返回空字符串的getServletInfo()方法、以及一个实现了service()方法的抽象方法。service()方法的实现交给了子类,以便在基于HTTP协议的Web开发中具体实现。
Tomcat的底层源码解析如下:
Server作为整个Tomcat服务器的代表,包含至少一个Service组件,用于提供特定服务。配置文件中明确展示了如何监听特定端口(如)以启动服务。
Service是逻辑功能层,一个Server可以包含多个Service。Service接收客户端请求,解析请求,完成业务逻辑,然后将处理结果返回给客户端。Service通常提供start方法打开服务Socket连接和监听服务端口,以及stop方法停止服务并释放网络资源。
Connector称为连接器,是Service的核心组件之一。一个Service可以有多个Connector,用于接收客户端请求,将请求封装成Request和Response,然后交给Container进行处理。Connector完成请求处理后,将结果返回给客户端。
Container是Service的另一个核心组件,按照层级有Engine、Host、Context、Wrapper四种。一个Service只有一个Engine,它是整个Servlet引擎,负责执行业务逻辑。Engine下可以包含多个Host,一个Tomcat实例可以配置多个虚拟主机,默认情况下在conf/server.xml配置文件中定义了一个名为Catalina的Engine。Engine包含多个Host的设计使得一个服务器实例可以提供多个域名的服务。
Host代表一个站点,可以称为虚拟主机,一个Host可以配置多个Context。在server.xml文件中的默认配置为appBase=webapps,这意味着webapps目录中的war包将自动解压,autoDeploy=true属性指定对加入到appBase目录的war包进行自动部署。
Context代表一个应用程序,即日常开发中的Web程序或一个WEB-INF目录及其下面的web.xml文件。每个运行的Web应用程序最终以Context的形式存在,每个Context都有一个根路径和请求路径。与Host的区别在于,Context代表一个应用,如默认配置下webapps目录下的每个目录都是一个应用,其中ROOT目录存放主应用,其他目录存放子应用,而整个webapps目录是一个站点。
Tomcat的启动流程遵循标准化流程,入口是BootStrap,按照Lifecycle接口定义进行启动。首先调用init()方法逐级初始化,接着调用start()方法启动服务,同时伴随着生命周期状态变更事件的触发。
启动文件分析Startup.bat:
设置CLASSPATH和MAINCLASS为启动类,并指定ACTION为启动。
Bootstrap作为整个启动时的入口,在main方法中使用bootstrap.init()初始化容器相关类加载器,并创建Catalina实例,然后启动Catalina线程。
Catalina Lifecycle接口提供了一种统一管理对象生命周期的接口,通过Lifecycle、LifecycleListener、LifecycleEvent接口,Catalina实现了对Tomcat各种组件、容器统一的启动和停止方式。在Tomcat服务开启过程中,启动的一系列组件、容器都实现了org.apache.catalina.Lifecycle接口,其中的init()、start()和stop()方法实现了统一的启动和停止管理。
加载方法解析server.xml配置文件,加载Server、Service、Connector、Container、Engine、Host、Context、Wrapper一系列容器,加载完成后调用initialize()开启新的Server实例。
使用Digester类解析server.xml文件,通过demon.start()方法调用Catalina的start方法。Catalina实例执行start方法,包括加载server.xml配置、初始化Server的过程以及开启服务、初始化并开启一系列组件、子容器的过程。
StandardServer实例调用initialize()方法初始化Tomcat容器的一系列组件。在容器初始化时,会调用其子容器的initialize()方法,初始化子容器。初始化顺序为StandardServer、StandardService、StandardEngine、Connector。每个容器在初始化自身相关设置的同时,将子容器初始化。