皮皮网

【spark on yarn 源码】【悟空源码贴吧】【max485源码】lightgbm源码分析

时间:2024-12-29 10:13:30 来源:企业建站正版源码 作者:jssdk.php源码

1.遇见神器!源码cufflinks:一款美不胜收的分析 Python 可视化工具包!
2.Apple M1的源码AI环境搭建
3.2020推荐系统大会(RecSys2020) 亮点
4.推荐收藏! 38 个 Python 数据科学顶级库!
5.Lightiy代码如何运行怎么运行代码?
6.lightgbm-gpu安装-踩坑现场

lightgbm源码分析

遇见神器!分析cufflinks:一款美不胜收的源码 Python 可视化工具包!

       遇见神器!分析spark on yarn 源码cufflinks:一款美不胜收的源码 Python 可视化工具包!

       近几年以来,分析Python 可视化库丰富多样,源码应用广泛。分析cufflinks 库作为新秀,源码以其简单易用、分析图形美观、源码代码量小的分析特色脱颖而出。只需一两行代码,源码就能生成精美的图表。以下是使用方法和示例。

       1.用法简单

       cufflinks 主要与 dataFrame 数据结合使用,绘图函数是 dataFrame.iplot。记住这个函数即可。iplot 函数参数丰富,如 kind、title、xTitle、yTitle等。

       2.少量代码画出漂亮图形

       cufflinks 提供多种主题样式,包括 polar、pearl、henanigans、solar、ggplot、space 和 white。折线图、散点图、气泡图、子图、箱形图、直方图和 3D 图等均可轻松生成。

       3.丰富的绘图功能

       cufflinks 库功能丰富,更多细节和学习资源请访问 Github 链接:github.com/santosjorge/...

       以下是部分图表示例代码:

       折线图代码:df.iplot(kind='lines')

       散点图代码:df.iplot(kind='scatter')

       气泡图代码:df.iplot(kind='bubble')

       子图代码:df.iplot(kind='subplots')

       箱形图代码:df.iplot(kind='box')

       直方图代码:df.iplot(kind='hist')

       3D图代码:df.iplot(kind='3d')

       交流群

       加入 Python 学习交流群,微信:dkl。加群时请备注:方向+学校/公司+知乎。

       文章推荐

       1.妙不可言!Mito:一款超级棒的 JupyterLab 扩展程序!

       2.微软出品!FLAML:一款可以自动化机器学习过程的神器!

       3.机器学习模型应该如何调优?这里有三大改进策略

       4.又在放大招!这个 Github 项目针对 Python 初学者!

       5.刷分神器,悟空源码贴吧使用 Hyperopt 实现 Lightgbm 自动化调参!

       6.这张 Python 数据科学速查表真棒!

       7.PySnooper:永远不要使用 print 进行调试

       8.超越 Facebook 的 Prophet,NeuralProphet 这个时序工具包也太强了!

       9.干货!张最新可视化大屏模板,各行业数据直接套用(含源码)

       .用 Python 写出这样的进度条,刷新了我对进度条的认知!

       .Rich:Python开发者的完美终端工具!

       .超级干货!史上最全数据分析学习路线(附资源下载)

       整理不易,有所收获,点个赞和爱心❤️,更多精彩欢迎关注。

Apple M1的AI环境搭建

       首先,搭建Apple M1的AI环境,Python3.9作为基础,考虑到M1的ARM架构,Anaconda不再适用,转而选择Miniforge3。必需的库有Tensorflow、xgboost、Lightgbm、Numpy、Pandas、Matplotlib和NGBoost等。由于是Python3.9,部分库可能无法正常使用。

       Homebrew,作为Mac的包管理工具,对于ARM架构的支持已经到位。如果有X版本的Homebrew,需先卸载,然后通过Homebrew的ARM版本进行安装。安装后,Homebrew会提示设置环境变量,推荐执行相应操作以确保环境配置。

       在bash shell下,记得source ~/.zprofile。对于X版本的Homebrew,虽然安装后未提示添加环境变量,但同样需要手动管理。

       为了优化软件源,可以考虑设置中科大源或清华大学源,如果需要更多选择,可以查看Homebrew的其他设置。对于cask,由于GitHub API访问限制,可能需要申请Api Token。max485源码

       接下来,下载并安装Miniforge3的arm版本,安装过程中会询问是否添加conda init到~/.zshrc。安装完成后,可以创建一个专为Tensorflow学习的虚拟环境。

       Tensorflow的安装方式有两种,一是默认安装,Apple已优化支持;二是通过environment.yml预先配置。在tf环境内,可以测试安装是否成功。

       对于Lightgbm,编译安装是较为可靠的方法,通过brew安装并设置编译环境。至于Numpy,通常会在Tensorflow安装时自动安装,其他库如Pandas、Matplotlib和NGBoost,可以通过conda或pip进行安装。

       注意,可能遇到的库问题,如OpenCV、Dlib等,需自行下载源码编译。在整个过程中,遇到问题时,Google搜索和官方文档是不可或缺的参考资源。

       最后,值得注意的是相关教程和指南,如TensorFlow-macos、Run xgboost on Mac、加速Mac上的TensorFlow性能等,这些都能提供具体步骤和帮助,确保在M1芯片Mac上顺利搭建AI环境。

推荐系统大会(RecSys) 亮点

       RecSys是聚焦于推荐系统的学术会议,因推荐系统应用广泛,吸引了大量工业界朋友参与。RecSys原计划在巴西举办,因疫情改为线上。线上会议虽有不便,但为远在北京的我提供了便利。此次会议效果超出预期,以下分享从工程师角度发现的亮点。

       组织方式方面,组织方用心确保会议顺利进行,相关人员连续小时工作,会议组织亮点明显。

       此次会议,既有工业界的源码数位溢出亮点,又有学术界的亮点。

       工业方向的亮点包括经过AB测试验证的方法和工程实现简单、能解决实际问题的方法。

       学术方向的亮点则包括新颖、前景广泛的方法,以及公开源代码或数据的方法。

       具体亮点包括:

       个人化意外推荐系统(PURS):由NYU Stern School of Business博士生Pan Li与阿里巴巴合作提出,旨在解决推荐系统中的过滤泡沫问题,提供源代码。该方法优势包括:

       基于行为的亚马逊视频流行度排名:由Amazon Video的Applied Scientists Lakshmi Ramachandran介绍,旨在解决流行度排名中的冷启动问题,即新内容无法通过传统流行度排名获得良好曝光。作者利用内容文本信息、历史流行度和用户交互数据预测当前流行度,最终以预测的流行度进行排序。年龄特征对新内容给予较高分数。下图展示了年龄特征的影响。

       基于查询的物品到物品推荐:ESTY.COM电商网站的Senior Applied Scientist Moumita Bhattacharya介绍,旨在根据用户的搜索点击内容生成物品嵌入,利用Faiss返回与当前物品最相似的物品列表作为候选集,再用lightGBM进行排序。亮点是利用上下文进行个性化推荐,例如在万圣节期间推荐与红色帽子相关联的物品。

       基于反事实学习的推荐系统:华为诺亚方舟实验室的Principal Researcher Zhenhua Dong介绍一系列研究成果,提出Uniform Unbiased Data,通过在1%流量中随机展示内容,收集用户反馈,利用这些数据进行一系列研究和实验,包括利用1%流量产生的无偏数据提高指标表现,显著提升了推荐系统的性能。

       利用小规模标注数据优化物品到物品推荐:微软研究院研究员Tobias Schnabel提出利用小规模标注数据改进物品到物品推荐方法,并公开数据和源代码,证明了这种方法的有效性,为工业界提供了优化推荐系统的新思路。

       大型开放数据集用于Bandit算法:由本科生Yuta Saito展示的RL&Bandits方向工作,提供了两组通过Uniform Rank和Bernoliour Rank产生的服饰购物行为数据,用于评估不同Offline Policy Evaluation方法的效果,同时也可用于新政策的开发。该工作提供了高质量的开源代码,包含详细注释,为学术界和工业界提供了宝贵的资源。

       总结而言,线上RecSys体验效果良好,参与者准备充分,希望未来能看到更多具有创新性的亮点工作。这次会议证明了推荐系统研究的多样性与实用性,也为工业界和学术界提供了交流与合作的平台。

推荐收藏! 个 Python 数据科学顶级库!编程猫源码跳跃

       欢迎关注@Python与数据挖掘 ,专注 Python、数据分析、数据挖掘、好玩工具!

       数据科学领域的顶级 Python 库推荐:

       1. Apache Spark - 大规模数据处理的统一分析引擎,

       星:,贡献:,贡献者:

       2. Pandas - 用于数据处理的快速、灵活且可表达的 Python 软件包,

       星:,贡献:,贡献者:

       3. Dask - 并行计算任务调度系统,

       星:,贡献:,贡献者:

       4. Scipy - 用于数学、科学和工程的开源 Python 模块,

       星:,贡献:,贡献者:

       5. Numpy - Python 科学计算的基本软件包,

       星:,贡献:,贡献者:

       6. Scikit-Learn - 基于 SciPy 的 Python 机器学习模块,

       星:,贡献:,贡献者:

       7. XGBoost - 可扩展、便携式和分布式梯度增强 GBDT 库,

       星:,贡献:,贡献者:

       8. LightGBM - 基于决策树的快速、高性能梯度提升 GB库,

       星:,贡献:,贡献者:

       9. Catboost - 高速、可扩展、高性能梯度提升库,

       星:,贡献:,贡献者:

       . Dlib - 用于创建解决实际问题的复杂软件的 C++ 工具箱,

       星:,贡献:,贡献者:

       . Annoy - C++/Python 中的优化内存使用和磁盘加载/保存的近似最近邻居系统,

       星:,贡献:,贡献者:

       . H2O.ai - 快速可扩展的开源机器学习平台,

       星:,贡献:,贡献者:

       . StatsModels - Python 中的统计建模和计量经济学,

       星:,贡献:,贡献者:

       . mlpack - 直观、快速且灵活的 C++ 机器学习库,

       星:,贡献:,贡献者:

       . Pattern - 包含 Web 挖掘工具的 Python 模块,

       星:,贡献:,贡献者:

       . Prophet - 生成具有多个季节性和线性或非线性增长的时间序列数据的高质量预测工具,

       星:,贡献:,贡献者:

       . TPOT - Python 自动化机器学习工具,使用遗传编程优化机器学习 pipeline,

       星:,贡献:,贡献者:

       . auto-sklearn - 自动化机器学习工具包,scikit-learn 估计器的直接替代品,

       星:,贡献:,贡献者:

       . Hyperopt-sklearn - scikit-learn 中基于 Hyperopt 的模型选择,

       星:,贡献:,贡献者:

       . SMAC-3 - 基于顺序模型的算法配置,

       星:,贡献:,贡献者:

       . scikit-optimize - 用于减少非常昂贵且嘈杂的黑盒功能的 Scikit-Optimize,

       星:,贡献:,贡献者:

       . Nevergrad - 用于执行无梯度优化的 Python 工具箱,

       星:,贡献:,贡献者:

       . Optuna - 自动超参数优化软件框架,

       星:,贡献:,贡献者:

       数据可视化:

       . Apache Superset - 数据可视化和数据探索平台,

       星:,贡献:,贡献者:

       . Matplotlib - 在 Python 中创建静态、动画和交互式可视化的综合库,

       星:,贡献:,贡献者:

       . Plotly - 适用于 Python 的交互式、基于开源和基于浏览器的图形库,

       星:,贡献:,贡献者:

       . Seaborn - 基于 matplotlib 的 Python 可视化库,提供高级界面进行吸引人的统计图形绘制,

       星:,贡献:,贡献者:

       . folium - 建立在 Python 数据处理能力之上并与 Leaflet.js 库地图能力结合的可视化库,

       星:,贡献:,贡献者:

       . Bqplot - Jupyter 的二维可视化系统,基于图形语法的构造,

       星:,贡献:,贡献者:

       . VisPy - 高性能的交互式 2D / 3D 数据可视化库,利用 OpenGL 库和现代图形处理单元 GPU 的计算能力显示大型数据集,

       星:,贡献:,贡献者:

       . PyQtgraph - 科学/工程应用的快速数据可视化和 GUI 工具,

       星:,贡献:,贡献者:

       . Bokeh - 现代 Web 浏览器中的交互式可视化库,提供优雅、简洁的构造,并在大型或流数据集上提供高性能的交互性,

       星:,贡献:,贡献者:

       . Altair - Python 的声明性统计可视化库,用于创建更简洁、更可理解的数据可视化,

       星:,贡献:,贡献者:

       解释与探索:

       . eli5 - 用于调试/检查机器学习分类器并解释其预测的库,

       星:,贡献:,贡献者:

       . LIME - 用于解释任何机器学习分类器预测的工具,

       星:,贡献:,贡献者:

       . SHAP - 基于博弈论的方法,用于解释任何机器学习模型的输出,

       星:,贡献:,贡献者:

       . YellowBrick - 可视化分析和诊断工具,用于辅助机器学习模型的选择,

       星:,贡献:,贡献者:

       . pandas-profiling - 从 pandas DataFrame 对象创建 HTML 分析报告的库,

       星:,贡献:,贡献者:

       技术交流群:

       建了技术交流群,想要进群的同学直接加微信号:dkl,备注:研究方向 + 学校/公司 + 知乎,即可加入。

       关注 Python与数据挖掘 知乎账号和 Python学习与数据挖掘 微信公众号,可以快速了解到最新优质文章。

       机器学习画图神器推荐,论文、博客事半功倍;模型可解释 AI (XAI) Python 框架盘点,6 个必备;prettytable - 可完美格式化输出的 Python 库;机器学习建模调参方法总结; 个机器学习最佳入门项目(附源代码);精通 Python 装饰器的 个神操作;VS Code 神级插件推荐;Schedule 模块 - Python 周期任务神器;4 款数据自动化探索 Python 神器;数据模型整理,建议收藏;Python 编程起飞的 个神操作;深度学习、自然语言处理和计算机视觉顶级 Python 框架盘点;用户画像标签体系建设指南;机器学习模型验证 Python 包推荐;可视化大屏模板精选,拿走就用;Python 可视化大屏不足百行代码;Python 中的 7 种交叉验证方法详解;文章推荐更多,点个赞和爱心,更多精彩欢迎关注。

Lightiy代码如何运行怎么运行代码?

       LightGBM是一个基于决策树算法的机器学习框架,它的安装和运行主要有以下几个步骤:

       安装LightGBM库:你可以在官方文档中找到LightGBM的安装指南。安装的方法有多种,可以使用pip安装,也可以从源代码编译安装。

       准备数据集:准备好需要用来训练和测试模型的数据集。通常将数据集分为训练集和测试集,其中训练集用于训练模型,测试集用于测试模型的性能。

       编写代码:使用Python等编程语言,编写LightGBM的代码。通常需要定义模型的超参数,读取训练和测试数据集,训练模型并测试模型的性能等。

       运行代码:在终端中运行代码,或使用集成开发环境(IDE)等工具运行代码。在终端中运行代码的方式是在命令行中输入代码所在文件的路径,例如:

       其中 train.py 是代码所在文件的名称。

       需要注意的是,运行LightGBM的代码需要一定的编程知识和机器学习知识,如果你刚刚开始学习机器学习,可以先学习一些基础知识再尝试运行代码。

lightgbm-gpu安装-踩坑现场

       为了实现lightgbm的GPU支持,您需要准备一些必要的工具包并遵循特定的步骤。首先,您需要下载并安装cmake、boost和lightgbm。

       对于cmake,您可以从其官方网站下载最新版本。当您下载并安装了cmake后,请确保将boost库文件的路径进行适当的修改。

       接下来,使用git从github下载lightgbm源代码。在下载的文件夹中创建一个名为“build”的文件夹并进入,然后在该文件夹内创建一个空的CMakeList.txt文件。

       在命令行中,定位到“build”目录并运行以下命令进行配置和构建:

       cmake -A x -DUSE_GPU=1 -DBOOST_ROOT=D:/software_work_install/boost_1__0 -DBOOST_LIBRARYDIR=D:/software_work_install/boost_1__0/lib -DOpenCL_LIBRARY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v.0/lib/x/OpenCL.lib" -DOpenCL_INCLUDE_DIR="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v.0/include" ..

       为了确保正确安装,参考链接提供了详细的cmake命令行安装指南以及安装SDK的步骤。执行上述命令后,您将看到“build”目录下生成了许多文件。

       接下来,通过执行命令“cmake --build . --target ALL_BUILD --config Release”,在“build/x”目录下生成“Release”文件夹。然后,通过命令“cd ..”回到上一层目录,进入“python-package”文件夹并执行“python setup.py install –-precompile”以完成安装。

       请注意,尽管您可能已经成功安装了GPU版本的lightgbm,但您在Jupyter中使用自己的代码时仍可能遇到缺少GPU的错误。这可能与依赖库的兼容性问题有关。因此,尽管您尝试了多次安装,但为了节省时间,您可能决定暂时放弃安装GPU版本的包。

       除了使用git clone和pip安装方式外,还有另一种方法是直接使用pip进行安装。您可以使用以下命令行命令:

       pip install lightgbm --install-option=--gpu --install-option="--boost-root=D:/software_work_install/boost_1__0" --install-option="--boost-librarydir=D:/software_work_install/boost_1__0/lib" --install-option="--opencl-include-dir=/usr/local/cuda/include/"

       如果您选择使用cmake GUI进行安装,步骤类似,但操作方式有所不同。通过GUI界面配置和生成构建文件后,您可能会遇到与版本兼容性相关的问题。

       安装过程可能会涉及一些挑战,例如确保所有依赖包的兼容性。在尝试解决安装问题时,可能会遇到各种错误和警告。在安装过程中遇到问题时,查看错误日志文件(如CMakeError.log)可能会提供进一步的线索和解决方案。

       请确保在安装过程中遵循正确的步骤和注意事项,并在遇到问题时查阅相关文档或论坛以寻求帮助。安装lightgbm GPU支持的完整过程可能涉及多个步骤和调整,确保您的开发环境与所有依赖库兼容至关重要。

Win 环境下,LightGBM GPU 版本的安装

       在Win环境下,想要利用GPU提升LightGBM的训练速度,安装过程并非易事。LightGBM,微软开发的高效梯度提升框架,可与XGBoost比肩,尤其适用于大规模数据。由于其GPU版本的教程相对较少,本文基于官方指南和Stack Overflow上的解答,总结了安装步骤和注意事项。

       安装步骤

       1. 对于CPU版本,LightGBM的安装方法有三种,与Python包安装类似。但使用GPU版本需要从源代码编译安装。

       GPU版本安装

       主要流程包括下载LightGBM源代码,使用CMake进行构建,然后通过`python setup.py install --gpu`安装。对于Windows用户,有两种编译方式:

       VS Build Tools:推荐用于Win平台,可以简化步骤,避免MinGW可能遇到的问题。

       MinGW:虽然速度可能较快,但可能会产生更多问题,且不推荐。

       对于VS Build Tools,需要安装Git、CMake、VS Build Tools,以及对应的OpenCL和Boost Binaries。具体步骤涉及下载、安装、设置环境变量,然后编译源文件。

       MinGW编译步骤类似,但需要下载MinGW或MinGW-w,然后按照类似流程操作。

       参数设置与性能测试

       安装成功后,通过设置`device='gpu'`和相关GPU参数,可以启用GPU计算。测试性能时,如能顺利运行,表明安装成功。不过,与其他框架相比,LightGBM在GPU调用上稍显不便,但其支持更多类型的显卡,对Intel集成显卡友好。

       性能提升方面,实际测试显示使用GPU计算有明显加速,但具体提升程度取决于硬件配置,如Intel集显和Nvidia独显的性能差异。

关键词:qqcpa源码

copyright © 2016 powered by 皮皮网   sitemap