1.qr code是源多少什么?
2.Runge-Kutta-Fehlberg算法(RKF45)之MATLAB版本
3.如何修改这句源码?
4.音视频流媒体开发系列(45)GLSurfaceView源码解析&EGL环境
qr code是什么?
基础知识
首先,我们先说一下二维码一共有个尺寸。源码官方叫版本Version。源多少Version 1是源码 x 的矩阵,Version 2是源多少 x 的矩阵,Version 3是源码转换成源码的尺寸,每增加一个version,源多少就会增加4的源码尺寸,公式是源多少:(V-1)*4 + (V是版本号) 最高Version ,(-1)*4+ = ,源码所以最高是源多少 x 的正方形。
下面我们看看一个二维码的源码样例:
定位图案
Position Detection Pattern是定位图案,用于标记二维码的源多少矩形大小。这三个定位图案有白边叫Separators for Postion Detection Patterns。源码之所以三个而不是源多少四个意思就是三个就可以标识一个矩形了。
Timing Patterns也是用于定位的。原因是二维码有种尺寸,尺寸过大了后需要有根标准线,不然扫描的时候可能会扫歪了。
Alignment Patterns 只有Version 2以上(包括Version2)的二维码需要这个东东,同样是为了定位用的。
功能性数据
Format Information 存在于所有的尺寸中,用于存放一些格式化数据的。
Version Information 在 >= Version 7以上,需要预留两块3 x 6的区域存放一些版本信息。
数据码和纠错码
除了上述的那些地方,剩下的地方存放 Data Code 数据码 和 Error Correction Code 纠错码。
数据编码
我们先来说说数据编码。QR码支持如下的编码:
Numeric mode 数字编码,从0到9。如果需要编码的数字的个数不是3的倍数,那么,最后剩下的1或2位数会被转成4或7bits,则其它的每3位数字会被编成 ,,bits,编成多长还要看二维码的尺寸(下面有一个表Table 3说明了这点)
Alphanumeric mode 字符编码。包括 0-9,crf源码tensorflow大写的A到Z(没有小写),以及符号$ % * + – . / : 包括空格。这些字符会映射成一个字符索引表。如下所示:(其中的SP是空格,Char是字符,Value是其索引值) 编码的过程是把字符两两分组,然后转成下表的进制,然后转成bits的二进制,如果最后有一个落单的,那就转成6bits的二进制。而编码模式和字符的个数需要根据不同的Version尺寸编成9, 或个二进制(如下表中Table 3)
Byte mode, 字节编码,可以是0-的ISO--1字符。有些二维码的扫描器可以自动检测是否是UTF-8的编码。
Kanji mode 这是日文编码,也是双字节编码。同样,也可以用于中文编码。日文和汉字的编码会减去一个值。如:在0X to 0X9FFC中的字符会减去,在0XE到0XEBBF中的字符要减去0XC,然后把结果前两个进制位拿出来乘以0XC0,然后再加上后两个进制位,最后转成bit的编码。如下图示例:
Extended Channel Interpretation (ECI) mode 主要用于特殊的字符集。并不是所有的扫描器都支持这种编码。
Structured Append mode 用于混合编码,也就是说,这个二维码中包含了多种编码格式。
FNC1 mode 这种编码方式主要是给一些特殊的工业或行业用的。比如GS1条形码之类的。
简单起见,后面三种不会在本文 中讨论。
下面两张表中,
Table 2 是各个编码格式的“编号”,这个东西要写在Format Information中。注:中文是
Table 3 表示了,不同版本(尺寸)的lunkr源码下载二维码,对于,数字,字符,字节和Kanji模式下,对于单个编码的2进制的位数。(在二维码的规格说明书中,有各种各样的编码规范表,后面还会提到)
下面我们看几个示例,
示例一:数字编码
在Version 1的尺寸下,纠错级别为H的情况下,编码:
1. 把上述数字分成三组:
2. 把他们转成二进制: 转成 ; 转成 ; 转成 。
3. 把这三个二进制串起来:
4. 把数字的个数转成二进制 (version 1-H是 bits ): 8个数字的二进制是
5. 把数字编码的标志和第4步的编码加到前面:
示例二:字符编码
在Version 1的尺寸下,纠错级别为H的情况下,编码: AC-
1. 从字符索引表中找到 AC- 这五个字条的索引 (,,,4,2)
2. 两两分组: (,) (,4) (2)
3.把每一组转成bits的二进制:
(,) *+ 等于 转成 (,4) *+4 等于 转成 (2) 等于 2 转成
4. 把这些二进制连接起来:
5. 把字符的个数转成二进制 (Version 1-H为9 bits ): 5个字符,5转成
6. 在头上加上编码标识 和第5步的个数编码:
结束符和补齐符
假如我们有个HELLO WORLD的字符串要编码,根据上面的示例二,我们可以得到下面的编码,
编码
字符数
HELLO WORLD的编码
我们还要加上结束符:
编码
字符数
HELLO WORLD的编码
结束
按8bits重排
如果所有的编码加起来不是8个倍数我们还要在后面加上足够的0,比如上面一共有个bits,所以,我们还要加上2个0,然后按8个bits分好组:
补齐码(Padding Bytes)
最后,如果如果还没有达到我们最大的bits数的限制,我们还要加一些补齐码(Padding Bytes),Padding Bytes就是重复下面的两个bytes: (这两个二进制转成十进制是和,我也不知道为什么,只知道Spec上是这么写的)关于每一个Version的每一种纠错级别的最大Bits限制,可以参看QR Code Spec的第页到页的Table-7一表。
假设我们需要编码的是Version 1的Q纠错级,那么,其最大需要个bits,而我们上面只有个bits,所以,还需要补个bits,也就是需要3个Padding Bytes,我们就添加三个,于是lua源码社区得到下面的编码:
上面的编码就是数据码了,叫Data Codewords,每一个8bits叫一个codeword,我们还要对这些数据码加上纠错信息。
纠错码
上面我们说到了一些纠错级别,Error Correction Code Level,二维码中有四种级别的纠错,这就是为什么二维码有残缺还能扫出来,也就是为什么有人在二维码的中心位置加入图标。
错误修正容量
L水平 7%的字码可被修正
M水平 %的字码可被修正
Q水平 %的字码可被修正
H水平 %的字码可被修正
那么,QR是怎么对数据码加上纠错码的?首先,我们需要对数据码进行分组,也就是分成不同的Block,然后对各个Block进行纠错编码,对于如何分组,我们可以查看QR Code Spec的第页到页的Table-到Table-的定义表。注意最后两列:
Number of Error Code Correction Blocks :需要分多少个块。
Error Correction Code Per Blocks:每一个块中的code个数,所谓的code的个数,也就是有多少个8bits的字节。
举个例子:上述的Version 5 + Q纠错级:需要4个Blocks(2个Blocks为一组,共两组),头一组的两个Blocks中各个bits数据 + 各 9个bits的纠错码(注:表中的codewords就是一个8bits的byte)(再注:最后一例中的(c, k, r )的公式为:c = k + 2 * r,因为后脚注解释了:纠错码的容量小于纠错码的一半)
下图给一个5-Q的示例(因为二进制写起来会让表格太大,所以,我都用了十进制,我们可以看到每一块的纠错码有个codewords,也就是个8bits的二进制数)
组
块
数据
对每个块的纠错码
1 1 6 6
2 7 7 6
2 1 7 6 7
2 6 5 2
注:二维码的纠错码主要是通过Reed-Solomon error correction(里德-所罗门纠错算法)来实现的。对于这个算法,对于我来说是相当的复杂,里面有很多的数学计算,比如:多项式除法,把1-的数映射成2的n次方(0<=n<=)的伽罗瓦域Galois Field之类的神一样的东西,以及基于这些基础的纠错数学公式,因为我的数据基础差,对于我来说太过复杂,所以我一时半会儿还有点没搞明白,还在学习中,iappQQ转账源码所以,我在这里就不展开说这些东西了。还请大家见谅了。(当然,如果有朋友很明白,也繁请教教我)
最终编码
穿插放置
如果你以为我们可以开始画图,你就错了。二维码的混乱技术还没有玩完,它还要把数据码和纠错码的各个codewords交替放在一起。如何交替呢,规则如下:
对于数据码:把每个块的第一个codewords先拿出来按顺度排列好,然后再取第一块的第二个,如此类推。如:上述示例中的Data Codewords如下:
块 1 6 6
块 2 7 7 6
块 3 7 6 7
块 4 6
我们先取第一列的:, , ,
然后再取第二列的:, , , , ,, ,
如此类推:, , , , ,, , ……… ……… ,,6,,,7,
对于纠错码,也是一样:
块 1
块 2
块 3
块 4 5 2
和数据码取的一样,得到:,,,,,,,,…… …… ,,,
然后,再把这两组放在一起(纠错码放在数据码之后)得到:
, , , , , , , , , , , , , 7, , , , , , , , , 7, 6, , , , , , 7, , , , , , , , , , , 6, , , , , , 6, , 6, , , , , , , , , 6, , , 7, , , , , , , , , , , , , 5, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 2, , , , , , , , , , , , , , , ,
这就是我们的数据区。
Remainder Bits
最后再加上Reminder Bits,对于某些Version的QR,上面的还不够长度,还要加上Remainder Bits,比如:上述的5Q版的二维码,还要加上7个bits,Remainder Bits加零就好了。关于哪些Version需要多少个Remainder bit,可以参看QR Code Spec的第页的Table-1的定义表。
画二维码图
Position Detection Pattern
首先,先把Position Detection图案画在三个角上。(无论Version如何,这个图案的尺寸就是这么大)
Alignment Pattern
然后,再把Alignment图案画上(无论Version如何,这个图案的尺寸就是这么大)
关于Alignment的位置,可以查看QR Code Spec的第页的Table-E.1的定义表(下表是不完全表格)
下图是根据上述表格中的Version8的一个例子(6,,)
Timing Pattern
接下来是Timing Pattern的线(这个不用多说了)
Format Information
再接下来是Formation Information,下图中的蓝色部分。
Format Information是一个个bits的信息,每一个bit的位置如下图所示:(注意图中的Dark Module,那是永远出现的)
这个bits中包括:
5个数据bits:其中,2个bits用于表示使用什么样的Error Correction Level, 3个bits表示使用什么样的Mask
个纠错bits。主要通过BCH Code来计算
然后个bits还要与做XOR操作。这样就保证不会因为我们选用了的纠错级别和的Mask,从而造成全部为白色,这会增加我们的扫描器的图像识别的困难。
下面是一个示例:
关于Error Correction Level如下表所示:
关于Mask图案如后面的Table 所示。
Version Information
再接下来是Version Information(版本7以后需要这个编码),下图中的蓝色部分。
Version Information一共是个bits,其中包括6个bits的版本号以及个bits的纠错码,下面是一个示例:
而其填充位置如下:
数据和数据纠错码
然后是填接我们的最终编码,最终编码的填充方式如下:从左下角开始沿着红线填我们的各个bits,1是黑色,0是白色。如果遇到了上面的非数据区,则绕开或跳过。
掩码图案
这样下来,我们的图就填好了,但是,也许那些点并不均衡,如果出现大面积的空白或黑块,会告诉我们扫描识别的困难。所以,我们还要做Masking操作(靠,还嫌不复杂)QR的Spec中说了,QR有8个Mask你可以使用,如下所示:其中,各个mask的公式在各个图下面。所谓mask,说白了,就是和上面生成的图做XOR操作。Mask只会和数据区进行XOR,不会影响功能区。(注:选择一个合适的Mask也是有算法的)
其Mask的标识码如下所示:(其中的i,j分别对应于上图的x,y)
下面是Mask后的一些样子,我们可以看到被某些Mask XOR了的数据变得比较零散了。
Mask过后的二维码就成最终的图了。
好了,大家可以去尝试去写一下QR的编码程序,当然,你可以用网上找个Reed Soloman的纠错算法的库,或是看看别人的源代码是怎么实现这个繁锁的编码。
Runge-Kutta-Fehlberg算法(RKF)之MATLAB版本
变步长的Runge-Kutta算法,如Runge-Kutta-Fehlberg算法(RKF),是一种在数值积分过程中动态调整步长以平衡精度与效率的计算方法。其核心公式根据当前计算误差与预设误差限的比例关系,决定步长h的调整,旨在确保计算结果既精确又高效。
实现RKF算法的MATLAB源代码,已通过校验,确保了程序的可靠性与准确性。对于该程序的使用与优化,有任何问题或建议,欢迎通过邮箱“nanxie7@sina.cn”与我交流。
在变步长算法的应用中,步长调整涉及三种主要状态:步长增加、步长减小、以及步长微调或保持。调整步长的目的是为了更精确地控制计算误差,以减少数值积分过程中的误差累积。减少步长意味着能更细致地捕捉到函数的动态变化,从而提高计算的精度。
另一方面,增加步长则旨在通过减少计算次数来提高计算效率,前提是不牺牲计算结果的精度。在某些场景下,如果只进行纯粹的步长增与减,可能会导致步长波动过大,不仅无法提高计算效率,反而可能因步长变化过于剧烈而影响计算的稳定性和效率。因此,在实际应用中,采用步长微调或保持策略,能够更灵活地适应函数变化的需要,从而在保证计算精度的同时,有效地提升计算效率。
如何修改这句源码?
根据错误信息,看起来是因为某个操作数缺少了操作符导致的错误。具体来说,可能是在该句中,某个操作数的前后缺少了相应的运算符,导致程序无法正确执行。
为了修复这个问题,你需要检查该句的每个操作数是否正确,并确保其前后都有相应的运算符。如果无法确定哪个操作数有问题,可以逐一排除,暂时注释掉一些操作数,然后重新编译运行程序,直到发现错误所在为止。
以下是修改该句源码的建议:
{ 引用分钟肯定}
分钟值 := KD.K#MIN < AND CROSS(KD.K#MIN, KD.D#MIN);
分钟值1 := KD.K#MIN < AND CROSS(KD.K#MIN, KD.D#MIN);
分钟值2 := 金龙火凤.金龙#MIN < AND CROSS(金龙火凤.金龙#MIN, 金龙火凤.火凤#MIN);
分钟值3 := 金龙火凤.金龙#MIN < AND CROSS(金龙火凤.金龙#MIN, 金龙火凤.火凤#MIN);
DRAWTEXT(分钟值2, L*0., '6');
COLORRED;
DRAWICON(CROSS(MA(C,), MA(C,)), MA(C,), );
在修改后的代码中,我对该句进行了格式化和简化,以便更容易阅读和理解。我还将每个操作数与其前后的运算符分开,以确保程序可以正确解析每个操作数。另外,我还将另外两个语句放在了该句的后面,以避免它们之间的语法错误。
音视频流媒体开发系列()GLSurfaceView源码解析&EGL环境
查看源码的原则:以常用的API为入口,依据地图、带着问题、沿着主线来寻找答案 从事「音视频领域」开发工作有前途吗? GLSurfaceView在使用时,我们调用的两个主要方法是setEGLContextClientVersion和setRenderer。具体操作在渲染回调中执行,包括onSurfaceCreated、onSurfaceChanged和onDrawFrame。 我们的焦点是EGL和GLThread。1.1. setRenderer的实现:检查GLThread的状态,确保只有一个GLThread存在。
1.2. GLThread实现:这是一个Thread的子类,关键逻辑在guardedRun方法中。
1.3. guardedRun(渲染核心逻辑):创建EGLSurface,获取GL对象,并在EGLContext和EGLSurface生成并绑定后执行渲染。渲染数据通过eglSwapBuffers显示。
1.4. EglHelper:提供创建EGLSurface、获取GL对象和交换Framebuffer的方法。
音视频免费学习资源:FFmpeg/WebRTC/RTMP/NDK/Android音视频流媒体高级开发 整理了一些面试题、学习资料、教学视频和学习路线图共享在群文件,资料涵盖C/C++、Linux、FFmpeg、WebRTC、RTMP等,免费分享,有需要的可以加入群自取。TextureView +EGL+ GLThread绘制图形
将GLSurfaceView内容简化,剔除SurfaceView继承,保留GL环境,使用GLEnvironment进行渲染。借鉴了[GLSurfaceView的简单分析及巧妙借用]的思路,避免了从头开始实现GL环境的复杂过程。 通过实践,了解了GLSurfaceView内部机制、EGLThread的实现和EGL上下文的意义。在TextureView基础上创建EGL上下文和GLThread以实现OpenGL的绘制。 感谢阅读。