1.大家都能看得懂的简易简易源码 - ahooks 是怎么处理 DOM 的?
2.elementui源码学习之仿写一个el-timeline
3.TiKV 源码解析系列文章(十四)Coprocessor 概览
4.源码剖析狗屁不通文章生成器
5.硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的实现原理
大家都能看得懂的源码 - ahooks 是怎么处理 DOM 的?
深入浅出ahooks源码系列文章之十三,完整文档地址如下。文章文章
本文主要探讨ahooks在处理DOM类Hooks时的源码源码规范及源码实现。
ahooks中的简易简易大部分DOM类Hooks会接收一个名为target的参数,用于表示要处理的文章文章元素。target可以接受三种类型:React.MutableRefObject(通过`useRef`保存的源码源码早起时刻 打卡源码DOM)、`HTMLElement`、简易简易或者函数(用于SSR场景)。文章文章
目标元素支持动态变化,源码源码这在实际应用中是简易简易常见的需求。
ahooks通过`useTargetElement`方法实现目标元素的文章文章获取,兼容第一点的源码源码参数规范。
`useEffectWithTarget`和`useLayoutEffectWithTarget`是简易简易针对第二点,支持target动态变化的文章文章实现,分别调用`createEffectWithTarget`函数。源码源码
在`packages/hooks/src/utils/useEffectWithTarget.ts`和`packages/hooks/src/utils/useLayoutEffectWithTarget.ts`中,`useEffect`和`useLayoutEffect`被调用,它们在内部封装处理逻辑。
`createEffectWithTarget`是核心函数,用于创建相应的副作用效果。
总结,ahooks通过规范的输入输出,支持丰富的c 轮询 源码DOM操作场景,内部进行封装处理,使用户能快速上手并灵活运用。
本文已收录至个人博客,欢迎关注。
elementui源码学习之仿写一个el-timeline
本文记录了仿写el-timeline组件的细节,以深入理解饿了么UI组件的实现机制。本系列文章将持续更新,深入探讨elementui源码的学习与实践。可访问开源仓库,通过npm start运行代码,结合注释辅助理解。
时间线组件构成包括:时间线小圆点、时间线竖线条、时间戳与具体内容详情四个部分。如图所示。
时间线组件主要需求包括:按时间线正序或倒序展示、自定义时间线小圆点样式与颜色、使用小图标替代时间线小圆点、控制时间戳与具体内容详情的位置、时间戳的显示与隐藏。
对官方组件的见解包括:提供与注入可以简化、时间戳位置优化、ddos汉化源码简约封装参考其他库组件。Antd与iview的时间线组件参数较为精简。
回顾知识点:数组方法的使用,如this.$slots.default.reverse();以及`:style`中的四元表达式应用,如`:style="border: ${ elementIcon} ${ borderColor}"`。
组件代码示例如下:`myTimeline`、`myTimelineItem`。完整代码在开源仓库,欢迎访问并star。
若本文对您有所助益,期待您的star,感谢支持!
TiKV 源码解析系列文章(十四)Coprocessor 概览
本文将简要介绍 TiKV Coprocessor 的基本原理。TiKV Coprocessor 是 TiDB 的一部分,用于在 TiKV 层处理读请求。通过引入 Coprocessor,TiKV 可以在获取数据后进行计算,从而提高性能。
传统处理方式中,TiDB 向 TiKV 获取数据,然后在 TiDB 内部进行计算。而 Coprocessor 则允许 TiKV 进行计算,ea源码解读将计算结果直接返回给 TiDB,减少数据在系统内部的传输。
Coprocessor 的概念借鉴自 HBase,其主要功能是对读请求进行分类,处理包括 TableScan、IndexScan、Selection、Limit、TopN、Aggregation 等不同类型请求。其中,DAG 类请求是最复杂且常用的类型,本文将重点介绍。
DAG 请求是由一系列算子组成的有向无环图,这些算子在代码中称为 Executors。DAG 请求目前支持两种计算模型:火山模型和向量化模型。在当前的 TiKV master 上,这两种模型并存,但火山模型已被弃用,因此本文将重点介绍向量化计算模型。
向量化计算模型中,所有算子实现了 BatchExecutor 接口,金山指标源码其核心功能是 get_batch。算子类型包括 TableScan、IndexScan、Selection、Limit、TopN 和 Aggregation 等,它们之间可以任意组合。
以查询语句“select count(1) from t where age>”为例,展示了如何使用不同算子进行处理。本文仅提供 Coprocessor 的概要介绍,后续将深入分析该模块的源码细节,并欢迎读者提出改进意见。
源码剖析狗屁不通文章生成器
一个名为“狗屁不通文章生成器”的项目在网络上引起了广泛关注,短短时间内就收获了.6千个星标和2.2千个分支。尽管项目只有6个文件,但其背后的黑科技却让其能够自动生成文章,引发了人们的好奇。
该项目起源于一个知乎问题,提问者需要写一份关于学生会退会的六千字申请。在众多的回答中,一位答主通过开源项目“狗屁不通文章生成器”迅速生成了一篇相关文章,不仅解决了提问者的困扰,还得到了广大网友的认同。文章内容虽然冗长且缺乏逻辑,但段段紧扣主题,引用了大量名人名言,使文章显得颇具说服力。
“狗屁不通文章生成器”最初是基于Python3的版本,后来有用户整理了网页版,并由suulnnka修改为在线版本,增强了页面样式,使使用更加便捷。通过查询参数将生成主题输入,用户可以轻松获取文章。在源码分析中,我们可以发现生成文章的核心方法是将文章内容作为数组存储,数组中的每个元素代表一个章节,通过循环遍历数组生成文章。
作者通过在每个章节中随机添加名人名言、论述以及终止章节,以达到生成文章的效果。虽然这种方法简单有效,但也导致生成的文章内容重复度较高。为了解决这一问题,作者在项目中表示下一步计划将防止文章内容过于重复。此外,该项目还受到了网友的进一步开发,包括日语版和用于喷人内容的版本。
值得一提的是,项目中的代码大量使用了中文函数名和变量名,这种做法在编程中并不多见,展现了项目作者的独特风格。作者还特意修改了代码中遗漏的英文变量名,将其改为中文,进一步优化了代码的可读性。
总的来说,“狗屁不通文章生成器”通过简单的代码实现了文章的自动生成,满足了一定需求,但也存在内容重复度高的问题。该项目的开发和应用,展示了编程领域中创新与实用的结合,同时也引发了对于文本生成技术的深入思考。
硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的实现原理
深入剖析JUC线程池ThreadPoolExecutor的执行核心 早有计划详尽解读ThreadPoolExecutor的源码,因事务繁忙未能及时整理。在之前的文章中,我们曾提及Doug Lea设计的Executor接口,其顶层方法execute()是线程池扩展的基础。本文将重点关注ThreadPoolExecutor#execute()的实现,结合简化示例,逐步解析。 ThreadPoolExecutor的核心功能包括固定的核心线程、额外的非核心线程、任务队列和拒绝策略。它的设计巧妙地运用了JUC同步器框架AbstractQueuedSynchronizer(AQS),以及位操作和CAS技术。以核心线程为例,设计上允许它们在任务队列满时阻塞,或者在超时后轮询,而非核心线程则在必要时创建。 创建ThreadPoolExecutor时,我们需要指定核心线程数、最大线程数、任务队列类型等。当核心线程和任务队列满载时,会尝试添加额外线程处理新任务。线程池的状态控制至关重要,通过整型变量ctl进行管理和状态转换,如RUNNING、SHUTDOWN、STOP等,状态控制机制包括工作线程上限数量的位操作。 接下来,我们深入剖析execute()方法。首先,方法会检查线程池状态和工作线程数量,确保在需要时添加新线程。这里涉及一个疑惑:为何需要二次检查?这主要是为了处理任务队列变化和线程池状态切换。任务提交流程中,addWorker()方法负责创建工作线程,其内部逻辑复杂,包含线程中断和适配器Worker的创建。 Worker内部类是线程池核心,它继承自AQS,实现Runnable接口。Worker的构造和run()方法共同确保任务的执行,同时处理线程中断和生命周期的终结。getTask()方法是工作线程获取任务的关键,它会检查任务队列状态和线程池大小,确保资源的有效利用。 线程池关闭操作通过shutdown()、shutdownNow()和awaitTermination()方法实现,它们涉及线程中断、任务队列清理和状态更新等步骤,以确保线程池的有序退出。在这些方法中,可重入锁mainLock和条件变量termination起到了关键作用,保证了线程安全。 ThreadPoolExecutor还提供了钩子方法,允许开发者在特定时刻执行自定义操作。除此之外,它还包含了监控统计、任务队列操作等实用功能,每个功能的实现都是对execute()核心逻辑的扩展和优化。 总的来说,ThreadPoolExecutor的execute()方法是整个线程池的核心,它的实现原理复杂而精细。后续将陆续分析ExecutorService和ScheduledThreadPoolExecutor的源码,深入探讨线程池的扩展和调度机制。敬请关注,期待下文的详细解析。