【Id易支付源码】【运算符源码】【caffe源码解读 filler】运行redis源码_redis 源码

2024-12-28 15:08:52 来源:kafka 分区 源码 分类:休闲

1.Redis源码阅读(1)——zmalloc
2.Redis源码解析:一条Redis命令是运行s源源码如何执行的?
3.linux怎么安装redis
4.Redis 实现分布式锁 +Redisson 源码解析
5.Redis7.0源码阅读:哈希表扩容、缩容以及rehash
6.[redis 运行s源源码源码走读] maxmemory 数据淘汰策略

运行redis源码_redis 源码

Redis源码阅读(1)——zmalloc

       zmalloc是一个简化内存分配的库,包含以下API函数:

       zmalloc

       zcalloc

       zrealloc

       zfree

       zstrdup

       zmalloc_used_memory

       zmalloc_set_oom_handler

       zmalloc_get_rss

       zmalloc_get_allocator_info

       zmalloc_get_private_dirty

       zmalloc_get_smap_bytes_by_field

       zmalloc_get_memory_size

       zlibc_free

       其中,运行s源源码zmalloc用于分配内存,运行s源源码zcalloc在分配内存的运行s源源码同时初始化为0,zrealloc用于重新分配内存,运行s源源码Id易支付源码zfree用于释放内存,运行s源源码zstrdup用于复制字符串并分配内存,运行s源源码zmalloc_used_memory用于获取已分配内存的运行s源源码大小,zmalloc_set_oom_handler用于设置内存溢出处理器,运行s源源码zmalloc_get_rss用于获取当前进程的运行s源源码内存使用量,zmalloc_get_allocator_info用于获取分配器信息,运行s源源码zmalloc_get_private_dirty用于获取私有脏数据,运行s源源码zmalloc_get_smap_bytes_by_field用于获取指定字段的运行s源源码内存使用量,zmalloc_get_memory_size用于获取内存大小,运行s源源码zlibc_free用于释放内存。

       在zmalloc中,宏函数update_zmalloc_stat_alloc用于更新used_memory的值。这个宏函数中的if语句用于补齐分配的内存字节数到sizeof(long),但是我不太理解5.0源码中为什么atomicIncr使用的是__n而不是直接对_n进行操作。测试发现,used_memory的值并未对齐到8,那么if语句的存在意义何在呢?

       同样地,update_zmalloc_stat_free宏函数用于更新已释放内存的统计信息。与update_zmalloc_stat_alloc相比,虽然malloc_usable_size已经返回精确的字节数,但update_zmalloc_stat_alloc为何不直接使用atomicIncr更新used_memory呢?在Unstable分支中,已有开发者对此进行了优化。

Redis源码解析:一条Redis命令是如何执行的?

       作者:robinhzhang

       Redis,一个开源内存数据库,凭借其高效能和广泛应用,如缓存、消息队列和会话存储,本文将带你探索其命令执行的底层流程。本文将以源码解析的形式,逐层深入Redis的核心结构和命令执行过程,旨在帮助开发者理解实现细节,提升编程技术和设计意识。

       源码结构概览

       在学习Redis源代码之前,首先要了解其主要的组成部分:redisServer、redisClient、redisDb、redisObject以及aeEventLoop。这些结构体和事件模型构成了Redis的核心架构。

       redisServer:服务端运行的运算符源码核心结构,包括监听socket、数据存储的redisDb列表和客户端连接信息。

       redisClient:客户端连接状态的存储,包括命令处理缓冲区、回复数据列表和数据库句柄。

       redisDb:键值对的数据存储,采用两个哈希表实现渐进式rehash。

       redisObject:存储对象的通用表示,包含引用计数和LRU时间,用于内存管理。

       aeEventLoop:事件循环,管理文件和时间事件的处理。

       核心流程详解

       Redis的执行流程从main函数开始,首先初始化配置和服务器组件,进入主循环处理事件。命令执行流程涉及redis启动、客户端连接、接收命令和返回结果四个步骤:

       启动阶段:创建socket服务器,注册可读事件,进入主循环。

       连接阶段:客户端连接后,接收并处理命令,创建客户端实例。

       命令阶段:客户端发送命令,服务端解析并调用对应的命令处理函数。

       结果阶段:处理命令后,根据协议格式构建回复并写回客户端。

       渐进式rehash与内存管理

       Redis的内存管理采用引用计数法,通过对象的refcount字段控制内存分配和释放。rehash操作在Redis 2.x版本引入,通过逐步迁移键值对,降低对单线程性能的影响。当负载达到阈值,会进行扩容,这涉及新表的创建和键值对的迁移。

       总结

       本文通过Redis源码分析,揭示了其命令执行的细节,包括启动流程、客户端连接、命令处理和结果返回,以及内存管理策略。这将有助于开发者深入理解Redis的工作原理,提升编程效率和设计决策能力。

linux怎么安装redis

       Linux安装Redis的caffe源码解读 filler步骤

       1. 下载Redis源码

       访问Redis官网,下载最新稳定版本的源码包。

       2. 解压源码包并编译安装

       使用tar命令解压源码包,然后进入解压后的目录,执行make命令进行编译。编译完成后,执行make install进行安装。

       3. 配置Redis

       安装完成后,需要进行Redis的配置。进入Redis的源码目录,复制一个redis.conf配置文件到安装目录,并修改配置文件中的相关参数。

       4. 启动Redis服务

       进入Redis安装目录的bin目录,执行./redis-server命令启动Redis服务。也可以使用systemd或supervisord等工具来管理Redis服务的启动和停止。

       以下是

       下载Redis源码:

       访问Redis官方网站,在“Download”页面找到适合Linux系统的源码包进行下载。通常源码包为tar.gz格式。

       解压源码包并编译安装:

       使用Linux系统的文件解压工具tar,将下载的源码包解压到指定目录。然后进入解压后的源码目录,执行make命令进行编译。这个过程可能需要一些依赖库的支持,如gcc等,确保系统已安装这些依赖。编译完成后,在源码目录下执行make install进行安装。

       配置Redis:

       安装完成后,需要配置Redis服务。进入Redis的源码目录,找到redis.conf这个配置文件,复制一份到安装目录,并根据实际需求修改配置文件中的参数,如设置端口号、绑定IP地址等。这些配置决定了Redis服务的基本运行方式。

       启动Redis服务:

       完成配置后,就可以启动Redis服务了。进入Redis安装目录的bin目录,执行./redis-server命令启动服务。如果需要后台运行或者希望使用systemd等工具管理Redis服务,可以在启动命令中加入相应的参数或配置。

       完成以上步骤后,Linux上的Redis就已经安装并可以运行了。

Redis 华为源码提交美国实现分布式锁 +Redisson 源码解析

       在一些场景中,多个进程需要以互斥的方式独占共享资源,这时分布式锁成为了一个非常有用的工具。

       随着互联网技术的快速发展,数据规模在不断扩大,分布式系统变得越来越普遍。一个应用往往会部署在多台机器上(多节点),在某些情况下,为了保证数据不重复,同一任务在同一时刻只能在一个节点上运行,即确保某一方法在同一时刻只能被一个线程执行。在单机环境中,应用是在同一进程下的,仅需通过Java提供的 volatile、ReentrantLock、synchronized 及 concurrent 并发包下的线程安全类等来保证线程安全性。而在多机部署环境中,不同机器不同进程,需要在多进程下保证线程的安全性,因此分布式锁应运而生。

       实现分布式锁的三种主要方式包括:zookeeper、Redis和Redisson。这三种方式都可以实现分布式锁,但基于Redis实现的性能通常会更好,具体选择取决于业务需求。

       本文主要探讨基于Redis实现分布式锁的方案,以及分析对比Redisson的RedissonLock、RedissonRedLock源码。

       为了确保分布式锁的可用性,实现至少需要满足以下四个条件:互斥性、过期自动解锁、请求标识和正确解锁。实现方式通过Redis的set命令加上nx、px参数实现加锁,以及使用Lua脚本进行解锁。实现代码包括加锁和解锁流程,核心实现命令和Lua脚本。这种实现方式的主要优点是能够确保互斥性和自动解锁,但存在单点风险,即如果Redis存储锁对应key的节点挂掉,可能会导致锁丢失,导致多个客户端持有锁的情况。

       Redisson提供了一种更高级的实现方式,实现了分布式可重入锁,包括RedLock算法。r语言 names 源码Redisson不仅支持单点模式、主从模式、哨兵模式和集群模式,还提供了一系列分布式的Java常用对象和锁实现,如可重入锁、公平锁、联锁、读写锁等。Redisson的使用方法简单,旨在分离对Redis的关注,让开发者更专注于业务逻辑。

       通过Redisson实现分布式锁,相比于纯Redis实现,有更完善的特性,如可重入锁、失败重试、最大等待时间设置等。同时,RedissonLock同样面临节点挂掉时可能丢失锁的风险。为了解决这个问题,Redisson提供了实现了RedLock算法的RedissonRedLock,能够真正解决单点故障的问题,但需要额外为RedissonRedLock搭建Redis环境。

       如果业务场景可以容忍这种小概率的错误,推荐使用RedissonLock。如果无法容忍,推荐使用RedissonRedLock。此外,RedLock算法假设存在N个独立的Redis master节点,并确保在N个实例上获取和释放锁,以提高分布式系统中的可靠性。

       在实现分布式锁时,还需要注意到实现RedLock算法所需的Redission节点的搭建,这些节点既可以是单机模式、主从模式、哨兵模式或集群模式,以确保在任一节点挂掉时仍能保持分布式锁的可用性。

       在使用Redisson实现分布式锁时,通过RedissonMultiLock尝试获取和释放锁的核心代码,为实现RedLock算法提供了支持。

Redis7.0源码阅读:哈希表扩容、缩容以及rehash

       当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。

       扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。

       扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。

       哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。

       rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。

       在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。

       综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。

[redis 源码走读] maxmemory 数据淘汰策略

       Redis 是一个内存数据库,通过配置 `maxmemory` 来限定其内存使用量。当 Redis 主库内存超出限制时,会触发数据淘汰机制,以减少内存使用量,直至达到限制阈值。

       当 `maxmemory` 配置被应用,Redis 会根据配置采用相应的数据淘汰策略。`volatile-xxx` 类型配置仅淘汰设置了过期时间的数据,而 `allkeys-xxx` 则淘汰数据库中所有数据。若 Redis 主要作为缓存使用,可选择 `allkeys-xxx`。

       数据淘汰时机发生在事件循环处理命令时。有多种淘汰策略可供选择,从简单到复杂包括:不淘汰数据(`noeviction`)、随机淘汰(`volatile-random`、`allkeys-random`)、采样淘汰(`allkeys-lru`、`volatile-lru`、`volatile-ttl`、`volatile-freq`)以及近似 LRU 和 LRU 策略(`volatile-lru` 和 `allkeys-lru`)。

       `noeviction` 策略允许读操作但禁止大多数写命令,返回 `oomerr` 错误,仅允许执行少量写命令,如删除命令 `del`、`hdel` 和 `unlink`。

       `volatile-random` 和 `allkeys-random` 机制相对直接,随机淘汰数据,策略相对暴力。

       `allkeys-lru` 策略根据最近最少使用(LRU)算法淘汰数据,优先淘汰最久未使用的数据。

       `volatile-lru` 结合了过期时间与 LRU 算法,优先淘汰那些最久未访问且即将过期的数据。

       `volatile-ttl` 策略淘汰即将过期的数据,而 `volatile-freq` 则根据访问频率(LFU)淘汰数据,考虑数据的使用热度。

       `volatile-lru` 和 `allkeys-lru` 策略通过采样来近似 LRU 算法,维护一个样本池来确定淘汰顺序,以提高淘汰策略的精确性。

       总结而言,Redis 的数据淘汰策略旨在平衡内存使用与数据访问需求,通过灵活的配置实现高效的数据管理。策略的选择应基于具体应用场景的需求,如数据访问模式、性能目标等。

redis7.0源码阅读:Redis中的IO多线程(线程池)

       Redis服务端处理客户端请求时,采用单线程模型执行逻辑操作,然而读取和写入数据的操作则可在IO多线程模型中进行。在Redis中,命令执行发生在单线程环境中,而数据的读取与写入则通过线程池进行。一个命令从客户端接收,解码成具体命令,根据该命令生成结果后编码并回传至客户端。

       Redis配置文件redis.conf中可设置开启IO多线程。通过设置`io-threads-do-reads yes`开启多线程,同时配置`io-threads 2`来创建两个线程,其中一个是主线程,另一个为IO线程。在网络处理文件networking.c中,`stopThreadedIOIfNeeded`函数会判断当前需要执行的命令数是否超过线程数,若少于线程数,则不开启多线程模式,便于调试。

       要进入IO多线程模式,运行redis-server命令,然后在调试界面设置断点在networking.c的`readQueryFromClient`函数中。使用redis-cli输入命令时,可以观察到两个线程在运行,一个为主线程,另一个为IO线程。

       相关视频推荐帮助理解线程池在Redis中的应用,包括手写线程池及线程池在后端开发中的实际应用。学习资源包括C/C++ Linux服务器开发、后台架构师技术等领域,需要相关资料可加入交流群获取免费分享。

       在Redis中,IO线程池实现中,主要包括以下步骤:

       读取任务的处理通过`postponeClientRead`函数,判断是否启用IO多线程模式,将任务加入到待执行任务队列。

       主线程执行`postponeClientRead`函数,将待读客户端任务加入到读取任务队列。在多线程模式下,任务被添加至队列中,由IO线程后续执行。

       多线程读取IO任务`handleClientsWithPendingReadsUsingThreads`通过解析协议进行数据读取,与写入任务的多线程处理机制相似。

       多线程写入IO任务`handleClientsWithPendingWritesUsingThreads`包括判断是否需要启动IO多线程、负载均衡分配任务到不同IO线程、启动IO子线程执行写入操作、等待IO线程完成写入任务等步骤。负载均衡通过将任务队列中的任务均匀分配至不同的线程消费队列中,实现无锁化操作。

       线程调度部分包含开启和关闭IO线程的功能。在`startThreadedIO`中,每个IO线程持有锁,若主线程释放锁,线程开始工作,IO线程标识设置为活跃状态。而在`stopThreadedIO`中,若主线程获取锁,则IO线程等待并停止,IO线程标识设置为非活跃状态。

redis源码阅读--跳表解析

       跳表是 Redis 中实现 zset 和 set 功能的关键数据结构。通过在链表基础上构建多级索引,跳表有效提升了查找效率,且其实现相较于红黑树更为简洁,无需大量精力来维持树的平衡。跳表节点具有顺序排列的特性,支持范围查询。

       跳表的构成包括头结点、尾节点、长度以及索引层数。每一个节点包含数据 robj、分数 score 用于排序、上一节点指针 prev 用于反向遍历,以及多层索引信息 levels。各层索引 skiplistlevel 包括该层索引中节点指向的下一个节点指针 next 和间隔 span。节点的索引层数通过随机数生成,设计思路为使用第 n 级索引是使用第 n-1 级索引概率的 1/4,最多使用 级索引。使用如此设计可确保即便用到最高层级,所持数据量也足够大,无需担心索引不足。

       跳表按照 score 和 robj 的大小进行排序,因此节点有序,支持范围查找。插入节点时,首先找到新节点可以插入的位置,即比新节点小的最大节点。此过程从最高层索引开始,使用 update 数组记录各层索引中节点的前一节点位置,以及 rank 数组记录 update 节点到 header 的间隔 span。新节点插入后,更新 prev 指针、tail 指针、跳表长度等信息。

       删除节点同样遵循类似的逻辑,先查找节点的前一个节点,然后删除目标节点。在删除过程中,需要检查节点的下一节点是否为待删除数据,并调整节点连接和更新跳表的 level 值。当某层索引中节点的 next 指针变为 nil 时,该层索引已无用,可将 level 减一。最后,更新跳表长度。

       虽然跳表概念看似复杂,但通过理解其多级索引机制,其余操作如范围查询、排名查询等将变得相对简单。在实际应用中,可通过阅读 Redis 源码中的 t_zset.c 和 redis.h 文件,了解跳表的具体实现。然而,更难的是将这些抽象概念转化为清晰、易于理解的文档,绘制图表对于深入理解跳表的逻辑非常有帮助。

本文地址:http://abssuliao.net/html/15a429395691.html 欢迎转发